ﻻ يوجد ملخص باللغة العربية
Pauli blockade mechanisms -- whereby carrier transport through quantum dots (QDs) is blocked due to selection rules even when energetically allowed -- are of both fundamental and technological interest, as a direct manifestation of the Pauli exclusion principle and as a key mechanism for manipulating and reading out spin qubits. Pauli spin blockade is well established for systems such as GaAs QDs, where the two-electron spin-singlet ground state is separated from the three triplet states higher in energy. However, Pauli blockade physics remains largely unexplored for systems in which the Hilbert space is expanded due to additional degrees of freedom, such as the valley quantum numbers in carbon-based materials or silicon. Here we report experiments on coupled graphene double QDs in which the spin and valley states can be precisely controlled. We demonstrate that gate and magnetic-field tuning allows switching between a spin-triplet--valley-singlet ground state with charge occupancy (2,0), where valley-blockade is observed, and a spin-singlet--valley-triplet ground state, where spin blockade is shown. These results demonstrate how the complex two-particle Hilbert space of graphene quantum dots can be unravelled experimentally, with implications for future spin and valley qubits.
We demonstrate double quantum dots fabricated in undoped Si/SiGe heterostructures relying on a double top-gated design. Charge sensing shows that we can reliably deplete these devices to zero charge occupancy. Measurements and simulations confirm tha
We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant
We investigate the influence of thermal energy on the current flow and electron spin states in double quantum dots in series. The quadruplet Pauli spin blockade, which is caused by the quadruplet and doublet states, occurs at low temperatures affecti
Understanding how the electron spin is coupled to orbital degrees of freedom, such as a valley degree of freedom in solid-state systems is central to applications in spin-based electronics and quantum computation. Recent developments in the preparati