ﻻ يوجد ملخص باللغة العربية
Lanthanum nitride (LaN) has attracted research interest in catalysis due to its ability to activate the triple bonds of N$_2$ molecules, enabling efficient and cost-effective synthesis of ammonia from N$_2$ gas. While exciting progress has been made to use LaN in functional applications, the electronic character of LaN (metallic, semi-metallic, or semiconducting) and magnitude of its band gap have so far not been conclusively determined. Here, we investigate the electronic properties of LaN with hybrid density functional theory calculations. In contrast to previous claims that LaN is semi-metallic, our calculations show that LaN is a direct-band-gap semiconductor with a band-gap value of 0.62 eV at the X point of the Brillouin zone. The dispersive character of the bands near the band edges leads to light electron and hole effective masses, making LaN promising for electronic and optoelectronic applications. Our calculations also reveal that nitrogen vacancies and substitutional oxygen atoms are two unintentional shallow donors with low formation energies that can explain the origin of the previously reported electrical conductivity. Our calculations clarify the semiconducting nature of LaN and reveal candidate unintentional point defects that are likely responsible for its measured electrical conductivity.
The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, kappa_0/T, is vanishingly small.
Here we report two-dimensional (2D) single-crystalline holey-graphyne (HGY) created an interfacial two-solvent system through a Castro-Stephens coupling reaction from 1,3,5-tribromo-2,4,6-triethynylbenzene. HGY is a new type of 2D carbon allotrope wh
We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical formula including the surface scattering and the size confinement effects of phonon transport is derived. The theoretical formula gives good agree
Motivated by the recent successful formation of the MoSi2N4 monolayer [Hong et al., Sci. 369, 670 (2020)], the structural, electronic and magnetic properties of MoSi2N4 nanoribbons (NRs) is investigated for the first time . The band structure calcula
Understanding the nature of the interaction at the graphene/metal interfaces is the basis for graphene-based electron- and spin-transport devices. Here we investigate the hybridization between graphene- and metal-derived electronic states by studying