ﻻ يوجد ملخص باللغة العربية
2I/Borisov - hereafter 2I - is the first visibly active interstellar comet observed in the solar system, allowing us for the first time to sample the composition of a building block from another system. We report on the monitoring of 2I with UVES, the high resolution optical spectrograph of the ESO Very Large Telescope at Paranal, during four months from November 15, 2019 to March 16, 2020. Our goal is to characterize the activity and composition of 2I with respect to solar system comets. We collected high resolution spectra at 12 different epochs from 2.1 au pre-perihelion to 2.6 au post perihelion. On December 24 and 26, 2019, close to perihelion, we detected several OH lines of the 309 nm (0-0) band and derived a water production rate of $2.2pm0.2 times 10^{26}$ molecules/s. The three [OI] forbidden oxygen lines were detected at different epochs and we derive a green-to-red doublet intensity ratio (G/R) of $0.31pm0.05$ close to perihelion. NH$_2$ ortho and para lines from various bands were measured and allowed us to derive an ortho-to-para ratio (OPR) of $3.21pm0.15$, corresponding to an OPR and spin temperature of ammonia of $1.11pm0.08$ and $31^{+10}_{-5}$ K, respectively. These values are consistent with the values usually measured for solar system comets. Emission lines of the radicals NH (336 nm), CN (388 nm), CH (431 nm), and C$_2$ (517 nm) were also detected. Several FeI and NiI lines were identified and their intensities were measured to provide a ratio of log (NiI/FeI) = $0.21pm0.18$ in agreement with the value recently found in solar system comets. Our high spectral resolution observations of 2I/Borisov and the associated measurements of the NH$_2$ OPR and the Ni/Fe abundance ratio are remarkably similar to solar system comets. Only the G/R ratio is unusually high but consistent with the high abundance ratio of CO/H$_2$O found by other investigators.
We processed images taken with the Hubble Space Telescope (HST) to investigate any morphological features in the inner coma suggestive of a peculiar activity on the nucleus of the interstellar comet 2I/Borisov. The coma shows an evident elongation, i
We present high resolution imaging observations of interstellar comet 2I/Borisov (formerly C/2019 Q4) obtained using the Hubble Space Telescope. Scattering from the comet is dominated by a coma of large particles (characteristic size 0.1 mm) ejected
Interstellar comets offer direct samples of volatiles from distant protoplanetary disks. 2I/Borisov is the first notably active interstellar comet discovered in our solar system[1]. Comets are condensed samples of the gas, ice, and dust that were in
We present Hubble Space Telescope observations of a photometric outburst and splitting event in interstellar comet 2I/Borisov. The outburst, first reported with the comet outbound at 2.8 AU (Drahus et al.~2020), was caused by the expulsion of solid p
The discovery of the first active interstellar object 2I/Borisov provides an unprecedented opportunity to study planetary formation processes in another planetary system. In particular, spectroscopic observations of 2I allow us to constrain the compo