ترغب بنشر مسار تعليمي؟ اضغط هنا

WISDOM Project -- IX Giant Molecular Clouds in the Lenticular Galaxy NGC4429: Effects of Shear and Tidal Forces on Clouds

232   0   0.0 ( 0 )
 نشر من قبل Lijie Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high spatial resolution (12pc) Atacama Large Millimeter/sub-millimeter Array CO(J=3-2) observations of the nearby lenticular galaxy NGC4429. We identify 217 giant molecular clouds within the 450pc radius molecular gas disc. The clouds generally have smaller sizes and masses but higher surface densities and observed linewidths than those of Milky Way disc clouds. An unusually steep size - line width relation and large cloud internal velocity gradients (0.05 - 0.91 km s^-1 pc^-1) and observed Virial parameters (alpha_obs,vir = 4.0) are found, that appear due to internal rotation driven by the background galactic gravitational potential. Removing this rotation, an internal Virial equilibrium appears to be established between the self-gravitational (Usg) and turbulent kinetic (Eturb) energies of each cloud, i.e. alpha_sg,vir=Usg/Eturb = 1.3. However, to properly account for both self and external gravity (shear and tidal forces), we formulate a modified Virial theorem and define an effective Virial parameter alpha_eff,vir = alpha_sg,vir + Usg/Eext (and associated effective velocity dispersion). The NGC4429 clouds then appear to be in a critical state in which the self-gravitational energy and the contribution of external gravity to the clouds energy budget (Eext) are approximately equal, i.e. Eext/Usg~1. As such, alpha_eff,vir = 2.2 and most clouds are not virialised but remain marginally gravitationally bound. We show this is consistent with the clouds having sizes similar to their tidal radii and being generally radially elongated. External gravity is thus as important as self-gravity to regulate the clouds of NGC4429.



قيم البحث

اقرأ أيضاً

As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC4429, that is barred and has a boxy/peanut- shaped bulge. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-2 observations of the 12CO(3-2) emission line with a linear resolution of ~13 pc (018x014). NGC4429 has a relaxed, flocculent nuclear disc of molecular gas that is truncated at small radii, likely due to the combined effects of gas stability and tidal shear. The warm/dense 12CO(3-2) emitting gas is confined to the inner parts of this disc, likely again because the gas becomes more stable at larger radii, preventing star formation. The gas disc has a low velocity dispersion of 2.2$^{+0.68}_{-0.65}$ km/s. Despite the inner truncation of the gas disc, we are able to model the kinematics of the gas and estimate a mass of (1.5$pm0.1^{+0.15}_{-0.35}$)$times$10$^8$ Msun for the SMBH in NGC4429 (where the quoted uncertainties reflect the random and systematic uncertainties, respectively), consistent with a previous upper limit set using ionised gas kinematics. We confirm that the V-band mass-to-light ratio changes by ~30% within the inner 400 pc of NGC4429, as suggested by other authors. This SMBH mass measurement based on molecular gas kinematics, the sixth presented in the literature, once again demonstrates the power of ALMA to constrain SMBH masses.
Tidal dwarf galaxies (TDGs) are gravitationally bound condensations of gas and stars formed during galaxy interactions. Here we present multi-configuration ALMA observations of J1023+1952, a TDG in the interacting system Arp 94, where we resolve CO(2 -1) emission down to giant molecular clouds (GMCs) at 0.64 ~ 45pc resolution. We find a remarkably high fraction of extended molecular emission (~80-90%), which is filtered out by the interferometer and likely traces diffuse gas. We detect 111 GMCs that give a similar mass spectrum as those in the Milky Way and other nearby galaxies (a truncated power law with slope of -1.76+/-0.13). We also study Larsons laws over the available dynamic range of GMC properties (~2 dex in mass and ~1 dex in size): GMCs follow the size-mass relation of the Milky Way, but their velocity dispersion is higher such that the size-linewidth and virial relations appear super-linear, deviating from the canonical values. The global molecular-to-atomic gas ratio is very high (~1) while the CO(2-1)/CO(1-0) ratio is quite low (~0.5), and both quantities vary from north to south. Star formation is predominantly taking place in the south of the TDG, where we observe projected offsets between GMCs and young stellar clusters ranging from ~50pc to ~200pc; the largest offsets correspond to the oldest knots, as seen in other galaxies. In the quiescent north, we find more molecular clouds and a higher molecular-to-atomic gas ratio (~1.5); atomic and diffuse molecular gas also have a higher velocity dispersion there. Overall, the organisation of the molecular ISM in this TDG is quite different from other types of galaxies on large scales, but the properties of GMCs seem fairly similar, pointing to near universality of the star-formation process on small scales.
We present a high spatial resolution ($approx 20$ pc) of $^{12}$CO($2-1$) observations of the lenticular galaxy NGC4526. We identify 103 resolved Giant Molecular Clouds (GMCs) and measure their properties: size $R$, velocity dispersion $sigma_v$, and luminosity $L$. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC4526 is gravitationally bound, with a virial parameter $alpha sim 1$. The mass distribution, $dN/dM propto M^{-2.39 pm 0.03}$, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size-linewidth correlation for the NGC4526 clouds, in contradiction to the expectation from Larsons relation. In general, the GMCs in NGC4526 are more luminous, denser, and have a higher velocity dispersion than equal size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density $Sigma$ of GMCs is not approximately constant as previously believed, but varies by $sim 3$ orders of magnitude. We also show that the size and velocity dispersion of GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e. $sigma_v R^{-1/2} propto Sigma^{1/2}$.
115 - Y. Miyamoto , N. Nakai , N. Kuno 2013
We have investigated the dynamics of the molecular gas and the evolution of GMAs in the spiral galaxy M51 with the NRO 45-m telescope. The velocity components of the molecular gas perpendicular and parallel to the spiral arms are derived at each spir al phase from the distribution of the line-of-sight velocity of the CO gas. In addition, the shear motion in the galactic disk is determined from the velocity vectors at each spiral phase. It is revealed that the distributions of the shear strength and of GMAs are anti-correlated. GMAs exist only in the area of the weak shear strength and further on the upstream side of the high shear strength. GMAs and most of GMCs exist in the regions where the shear critical surface density is smaller than the gravitational critical surface density, indicating that they can stably grow by self-gravity and the collisional agglomeration of small clouds without being destroyed by shear motion. These indicate that the shear motion is an important factor in evolution of GMCs and GMAs.
Star formation activity depends on galactic-scale environments. To understand the variations in star formation activity, comparing the properties of giant molecular clouds (GMCs) among environments with different star formation efficiency (SFE) is ne cessary. We thus focus on a strongly barred galaxy to investigate the impact of the galactic environment on the GMCs properties, because the SFE is clearly lower in bar regions than in arm regions. In this paper, we present the $^{12}$CO($1-0$) observations toward the western bar, arm and bar-end regions of the strongly barred galaxy NGC1300 with ALMA 12-m array at a high angular resolution of $sim$40 pc. We detected GMCs associated with the dark lanes not only in the arm and bar-end regions but also in the bar region, where massive star formation is not seen. Using the CPROPS algorithm, we identified and characterized 233 GMCs across the observed regions. Based on the Kolmogorov-Smirnov test, we find that there is virtually no significant variations in GMC properties (e.g., radius, velocity dispersion, molecular gas mass, and virial parameter) among the bar, arm and bar-end region. These results suggest that systematic differences in the physical properties of the GMCs are not the cause for SFE differences with environments, and that there should be other mechanisms which control the SFE of the GMCs such as fast cloud-cloud collisions in NGC1300.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا