ﻻ يوجد ملخص باللغة العربية
Grapevine winter pruning is a complex task, that requires skilled workers to execute it correctly. The complexity of this task is also the reason why it is time consuming. Considering that this operation takes about 80-120 hours/ha to be completed, and therefore is even more crucial in large-size vineyards, an automated system can help to speed up the process. To this end, this paper presents a novel multidisciplinary approach that tackles this challenging task by performing object segmentation on grapevine images, used to create a representative model of the grapevine plants. Second, a set of potential pruning points is generated from this plant representation. We will describe (a) a methodology for data acquisition and annotation, (b) a neural network fine-tuning for grapevine segmentation, (c) an image processing based method for creating the representative model of grapevines, starting from the inferred segmentation and (d) potential pruning points detection and localization, based on the plant model which is a simplification of the grapevine structure. With this approach, we are able to identify a significant set of potential pruning points on the canes, that can be used, with further selection, to derive the final set of the real pruning points.
Grapevine winter pruning is a complex task, that requires skilled workers to execute it correctly. The complexity makes it time consuming. It is an operation that requires about 80-120 hours per hectare annually, making an automated robotic system th
Mobile manipulators that combine mobility and manipulability, are increasingly being used for various unstructured application scenarios in the field, e.g. vineyards. Therefore, the coordinated motion of the mobile base and manipulator is an essentia
We present a method for a wine recommendation system that employs multidimensional clustering and unsupervised learning methods. Our algorithm first performs clustering on a large corpus of wine reviews. It then uses the resulting wine clusters as an
Popular network pruning algorithms reduce redundant information by optimizing hand-crafted models, and may cause suboptimal performance and long time in selecting filters. We innovatively introduce adaptive exemplar filters to simplify the algorithm
Attributing the output of a neural network to the contribution of given input elements is a way of shedding light on the black-box nature of neural networks. Due to the complexity of current network architectures, current gradient-based attribution m