ﻻ يوجد ملخص باللغة العربية
Utilizing review information to enhance recommendation, the de facto review-involved recommender systems, have received increasing interests over the past few years. Thereinto, one advanced branch is to extract salient aspects from textual reviews (i.e., the item attributes that users express) and combine them with the matrix factorization technique. However, existing approaches all ignore the fact that semantically different reviews often include opposite aspect information. In particular, positive reviews usually express aspects that users prefer, while negative ones describe aspects that users reject. As a result, it may mislead the recommender systems into making incorrect decisions pertaining to user preference modeling. Towards this end, in this paper, we propose a Review Polarity-wise Recommender model, dubbed as RPR, to discriminately treat reviews with different polarities. To be specific, in this model, positive and negative reviews are separately gathered and utilized to model the user-preferred and user-rejected aspects, respectively. Besides, in order to overcome the imbalance problem of semantically different reviews, we also develop an aspect-aware importance weighting approach to align the aspect importance for these two kinds of reviews. Extensive experiments conducted on eight benchmark datasets have demonstrated the superiority of our model as compared to a series of state-of-the-art review-involved baselines. Moreover, our method can provide certain explanations to the real-world rating prediction scenarios.
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for r
Recommender systems have fulfilled an important role in everyday life. Recommendations such as news by Google, videos by Netflix, goods by e-commerce providers, etc. have heavily changed everyones lifestyle. Health domains contain similar decision-ma
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement le
Realistic recommender systems are often required to adapt to ever-changing data and tasks or to explore different models systematically. To address the need, we present AutoRec, an open-source automated machine learning (AutoML) platform extended fro
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differ