ترغب بنشر مسار تعليمي؟ اضغط هنا

Seebeck effect of Dirac electrons

72   0   0.0 ( 0 )
 نشر من قبل Junji Fujimoto
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Seebeck effect in the three-dimensional Dirac electron system based on the linear response theory with Luttingers gravitational potential. The Seebeck coefficient $S$ is defined by $S = L_{12} / L_{11} T$, where $T$ is the temperature, and $L_{11}$ and $L_{12}$ are the longitudinal response coefficients of the charge current to the electric field and to the temperature gradient, respectively; $L_{11}$ is the electric conductivity and $L_{12}$ is the thermo-electric conductivity. It is confirmed that $L_{11}$ and $L_{12}$ are related through Motts formula in low temperatures. The dependences of the Seebeck coefficient on the chemical potential $mu$ and the temperature $T$ when the chemical potential lies in the band gap ($|mu| < Delta$) are partially captured by $S propto (Delta - mu) / k_{mathrm{B}} T$ for $mu > 0$ as in semiconductors. The Seebeck coefficient takes the relatively large value $|S| simeq 1.7 ,mathrm{m V/K}$ at $T simeq 8.7,mathrm{K}$ for $Delta = 15 ,mathrm{m eV}$ by assuming doped bismuth.



قيم البحث

اقرأ أيضاً

290 - T. Kikkawa , D. Reitz , H. Ito 2021
Thermoelectric effects have been applied to power generators and temperature sensors that convert waste heat into electricity. The effects, however, have been limited to electrons to occur, and inevitably disappear at low temperatures due to electron ic entropy quenching. Here, we report thermoelectric generation caused by nuclear spins in a solid: nuclear-spin Seebeck effect. The sample is a magnetically ordered material MnCO$_{3}$ having a large nuclear spin ($I = 5/2$) of $^{55}$Mn nuclei and strong hyperfine coupling, with a Pt contact. In the system, we observe low-temperature thermoelectric signals down to 100 mK due to nuclear-spin excitation. Our theoretical calculation in which interfacial Korringa process is taken into consideration quantitatively reproduces the results. The nuclear thermoelectric effect demonstrated here offers a way for exploring thermoelectric science and technologies at ultralow temperatures.
We examine how the photo-induced carriers contribute the thermoelectric transport, i.e. the nature of the photo-Seebeck effect, in the wide-gap oxide semiconductor ZnO for the first time. We measure the electrical conductivity and the Seebeck coeffic ient with illuminating light. The light illumination considerably changes the Seebeck coefficient as well as the conductivity, which is sensitive to the photon energy of the illuminated light. By using a simple parallel-circuit model, we evaluate the contributions of the photo-induced carriers to the conductivity and the Seebeck coefficient, whose relationship shows a remarkable resemblance to that in doped semiconductors. Our results also demonstrate that the light illumination increases both the carrier concentration and the mobility, which can be compared with impurity-doping case for ZnO. Future prospects for thermoelectrics using light are discussed.
How magnetism affects the Seebeck effect is an important issue widely concerned in the thermoelectric community yet remaining elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied $d$-electron based ferro- and anti-ferromagn ets, we demonstrate that in itinerant or partially itinerant magnetic compounds there exists a generic spin contribution to the Seebeck effect over an extended temperature range from slightly below to well above the magnetic transition temperature. This contribution is interpreted as resulting from transport spin entropy of (partially) delocalized conducting $d$ electrons with strong thermal spin fluctuations, even semiquantitatively in a single-band case, in addition to the conventional diffusion part arising from their kinetic degrees of freedom. As a highly generic effect, the spin-dependent Seebeck effect might pave a feasible way to efficient magnetic thermoelectrics.
We performed temperature-dependent optical pump - THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and observe a continuous increase as temperature is decreased, opposite to what is observed in electrical measurements where the spin Seebeck effect is suppressed as 0K is approached. By quantitatively analysing the different contributions we isolate the temperature dependence of the spin-mixing conductance and observe features that are correlated to the bands of magnon spectrum in YIG.
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, a lthough we do not observe a change of sign of the voltage at the Pt strip when it is moved from hot to cold side, which is believed to be the most striking feature of the transverse spin Seebeck effect. Therefore, we relate the observed voltages to the longitudinal spin Seebeck effect generated by a parasitic out-of-plane temperature gradient, which can be simulated by contact tips of different material and heat conductivities and by tip heating. This work gives new insights into the interpretation of transverse spin Seebeck effect experiments, which are still under discussion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا