ﻻ يوجد ملخص باللغة العربية
We study the Seebeck effect in the three-dimensional Dirac electron system based on the linear response theory with Luttingers gravitational potential. The Seebeck coefficient $S$ is defined by $S = L_{12} / L_{11} T$, where $T$ is the temperature, and $L_{11}$ and $L_{12}$ are the longitudinal response coefficients of the charge current to the electric field and to the temperature gradient, respectively; $L_{11}$ is the electric conductivity and $L_{12}$ is the thermo-electric conductivity. It is confirmed that $L_{11}$ and $L_{12}$ are related through Motts formula in low temperatures. The dependences of the Seebeck coefficient on the chemical potential $mu$ and the temperature $T$ when the chemical potential lies in the band gap ($|mu| < Delta$) are partially captured by $S propto (Delta - mu) / k_{mathrm{B}} T$ for $mu > 0$ as in semiconductors. The Seebeck coefficient takes the relatively large value $|S| simeq 1.7 ,mathrm{m V/K}$ at $T simeq 8.7,mathrm{K}$ for $Delta = 15 ,mathrm{m eV}$ by assuming doped bismuth.
Thermoelectric effects have been applied to power generators and temperature sensors that convert waste heat into electricity. The effects, however, have been limited to electrons to occur, and inevitably disappear at low temperatures due to electron
We examine how the photo-induced carriers contribute the thermoelectric transport, i.e. the nature of the photo-Seebeck effect, in the wide-gap oxide semiconductor ZnO for the first time. We measure the electrical conductivity and the Seebeck coeffic
How magnetism affects the Seebeck effect is an important issue widely concerned in the thermoelectric community yet remaining elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied $d$-electron based ferro- and anti-ferromagn
We performed temperature-dependent optical pump - THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, a