ﻻ يوجد ملخص باللغة العربية
We present the results on the physical properties of filaments and dense cores in IC 5146, as a part of the TRAO FUNS project. We carried out On-The-Fly mapping observations using the Taeduk Radio Astronomy Observatory (TRAO) 14m telescope covering about 1 square degree of the area of IC 5146 using various molecular lines. We identified 14 filaments (24 in total, including sub-filaments) from the C$^{18}$O (1-0) data cube and 22 dense cores from the $rm N_{2}H^{+}$ (1-0) data. We examined the filaments gravitational criticality, turbulence properties, accretion rate from filaments to dense cores, and relative evolutionary stages of cores. Most filaments in IC 5146 are gravitationally supercritical within the uncertainty, and most dense cores are formed in them. We found that dense cores in the hubs show a systemic velocity shift of ~0.3 km/s between the $rm N_{2}H^{+}$ and C$^{18}$O gas. Besides, these cores are subsonic or transonic, while the surrounding filament gas is transonic or supersonic, indicating that the cores in the hubs are likely formed by the turbulence dissipation in the colliding turbulent filaments and the merging is still ongoing. We estimated the mass accretion rate of $15 - 35~M_{odot}~rm Myr^{-1}$ from the filaments to the dense cores, and the required time scales to collect the current core mass are consistent with the lifetime of the dense cores. The structures of filaments and dense cores in the hub can form by a collision of turbulent converging flows, and mass flow along the filaments to the dense cores may play an important role in forming dense cores.
TRAO FUNS is a project to survey Gould Belts clouds in molecular lines. This paper presents its first results on the central region of the California molecular cloud, L1478. We performed On-The-Fly mapping observations using the Taedeok Radio Astrono
This paper presents spectra in the 2 to 20 micron range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASAs Infrared Telescope Facility (IRTF) SpeX instrument and the Spitzer Space Telescopes Infrare
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravi
Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with over-densities that are sometimes associated with infrared
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities,