ﻻ يوجد ملخص باللغة العربية
When AI tools can generate many solutions, some human preference must be applied to determine which solution is relevant to the current project. One way to find those preferences is interactive search-based software engineering (iSBSE) where humans can influence the search process. Current iSBSE methods can lead to cognitive fatigue (when they overwhelm humans with too many overly elaborate questions). WHUN is an iSBSE algorithm that avoids that problem. Due to its recursive clustering procedure, WHUN only pesters humans for $O(log_2{N})$ interactions. Further, each interaction is mediated via a feature selection procedure that reduces the number of asked questions. When compared to prior state-of-the-art iSBSE systems, WHUN runs faster, asks fewer questions, and achieves better solutions that are within $0.1%$ of the best solutions seen in our sample space. More importantly, WHUN scales to large problems (in our experiments, models with 1000 variables can be explored with half a dozen interactions where, each time, we ask only four questions). Accordingly, we recommend WHUN as a baseline against which future iSBSE work should be compared. To facilitate that, all our scripts are online at https://github.com/ai-se/whun.
A major challenge in testing software product lines is efficiency. In particular, testing a product line should take less effort than testing each and every product individually. We address this issue in the context of input-output conformance testin
Applying program analyses to Software Product Lines (SPLs) has been a fundamental research problem at the intersection of Product Line Engineering and software analysis. Different attempts have been made to lift particular product-level analyses to r
Safety-critical software systems are in many cases designed and implemented as families of products, usually referred to as Software Product Lines (SPLs). Products within an SPL vary from each other in terms of which features they include. Applying e
In Software Product Line Engineering (SPLE), a portfolio of similar systems is developed from a shared set of software assets. Claimed benefits of SPLE include reductions in the portfolio size, cost of software development and time to production, as
We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthe