ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully {it ab-initio} electronic structure of Ca$_{2}$RuO$_{4}$

389   0   0.0 ( 0 )
 نشر من قبل Francesco Petocchi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reliable {it ab-initio} description of strongly correlated materials is a long-sought capability in condensed matter physics. The $GW$+EDMFT method is a promising scheme, which provides a self-consistent description of correlations and screening, and does not require user-provided parameters. In order to test the reliability of this approach we apply it to the experimentally well characterized perovskite compound Ca$_2$RuO$_4$, in which a temperature-dependent structural deformation drives a paramagnetic metal-insulator transition. Our results demonstrate that the nonlocal polarization and self-energy components introduced by $GW$ are essential for setting the correct balance between interactions and bandwidths, and that the $GW$+EDMFT scheme produces remarkably accurate predictions of the electronic properties of this strongly correlated material.



قيم البحث

اقرأ أيضاً

A framework is presented for modeling and understanding magnetic excitations in localized, intermediate coupling magnets where the interplay between spin-orbit coupling, magnetic exchange, and crystal field effects are known to create a complex lands cape of unconventional magnetic behaviors and ground states. A spin-orbit exciton approach for modeling these excitations is developed based upon a Hamiltonian which explicitly incorporates single-ion crystalline electric field and spin exchange terms. This framework is then leveraged to understand a canonical Van Vleck $jrm{_{eff}}=0$ singlet ground state whose excitations are coupled spin and crystalline electric field levels. Specifically, the anomalous Higgs mode [Jain et al. Nat. Phys. 13, 633 (2017)], spin-waves [S. Kunkem{o}ller et al. Phys. Rev. Lett. 115, 247201 (2015)], and orbital excitations [L. Das et al. Phys. Rev. X 8, 011048 (2018)] in the multiorbital Mott insulator Ca$_2$RuO$_4$ are captured and good agreement is found with previous neutron and inelastic x-ray spectroscopic measurements. Furthermore, our results illustrate how a crystalline electric field-induced singlet ground state can support coherent longitudinal, or amplitude excitations, and transverse wavelike dynamics. We use this description to discuss mechanisms for accessing a nearby critical point.
Insulator-to-metal transition in Ca$_{2}$RuO$_{4}$ has drawn keen attention because of its sensitivity to various stimulation and its potential controllability. Here, we report a direct observation of Fermi surface, which emerges upon introducing exc ess oxygen into an insulating Ca$_{2}$RuO$_{4}$, by using angle-resolved photoemission spectroscopy. Comparison between energy distribution curves shows that the Mott insulating gap is closed by eV-scale spectral-weight transfer with excess oxygen. Momentum-space mapping exhibits two square-shaped sheets of the Fermi surface. One is a hole-like $alpha$ sheet around the corner of a tetragonal Brillouin zone, and the other is an electron-like $beta$ sheet around the $Gamma$ point. The electron occupancies of the $alpha$ and $beta$ bands are determined to be $n_{alpha}=1.6$ and $n_{beta}=0.6$, respectively. Our result indicates that the insulator-to-metal transition occurs selectively in $d_{xz}$ and $d_{yz}$ bands and not yet in $d_{xy}$ band. This orbital selectivity is most likely explained in terms of the energy level of $d_{xy}$, which is deeper for Ca$_{2}$RuO$_{4+delta}$ than for Ca$_{1.8}$Sr$_{0.2}$RuO$_{4}$. Consequently, we found substantial differences from the Fermi surface of other ruthenates, shedding light on a unique role of excess oxygen among the metallization methods of Ca$_{2}$RuO$_{4}$.
We show that the pressure-temperature phase diagram of the Mott insulator Ca$_{2}$RuO$_{4}$ features a metal-insulator transition at 0.5GPa: at 300K from paramagnetic insulator to paramagnetic quasi-two-dimensional metal; at $T leq$ 12K from antiferr omagnetic insulator to ferromagnetic, highly anisotropic, three-dimensional metal. % We compare the metallic state to that of the structurally related p-wave superconductor Sr$_{2}$RuO$_{4}$, and discuss the importance of structural distortions, which are expected to couple strongly to pressure.
234 - Julien Soret 2011
We used fully correlated ab initio calculations to determine the effective parameters of Hubbard and t - J models for the thermoelectric misfit compound $rm Ca_3Co_4O_9$. As for the $rm Na_xCoO_2$ family the Fermi level orbitals are the $a_{1g}$ orbi tals of the cobalt atoms ; the $e_g$ being always lower in energy by more than 240,meV. The electron correlation is found very large $U/tsim 26$ as well as the parameters fluctuations as a function of the structural modulation. The main consequences are a partial $a_{1g}$ electrons localization and a fluctuation of the in-plane magnetic exchange from AFM to FM. The behavior of the Seebeck coefficient as a function of temperature is discussed in view of the ab initio results, as well as the 496,K phase transition.
Recently, rutile RuO$_2$ has raised interest for its itinerant antiferromagnetism, crystal Hall effect, and strain-induced superconductivity. Understanding and manipulating these properties demands resolving the electronic structure and the relative roles of the rutile crystal field and $4d$ spin-orbit coupling (SOC). Here, we use O-K and Ru $M_3$ x-ray absorption (XAS) and Ru $M_3$ resonant inelastic x-ray scattering (RIXS) to disentangle the contributions of crystal field, SOC, and electronic correlations in RuO$_2$. The locally orthorhombic site symmetry of the Ru ions introduces significant crystal field contributions beyond the approximate octahedral coordination yielding a crystal field energy scale of $Delta(t_{2g})approx 1$ eV breaking the degeneracy of the $t_{2g}$ orbitals. This splitting exceeds the Ru SOC ($approx160$ meV) suggesting a more subtle role of SOC, primarily through the modification of itinerant (rather than local) $4d$ electronic states, ultimately highlighting the importance of the local symmetry in RuO$_2$. Remarkably, our analysis can be extended to other members of the rutile family, thus advancing the comprehension of the interplay among crystal field symmetry, electron correlations, and SOC in transition metal compounds with the rutile structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا