ﻻ يوجد ملخص باللغة العربية
Metasurfaces have achieved fruitful results in tailoring complexing light fields in free space. However, a systematic investigation on applying the concept of meta-optics to completely control waveguide modes is still elusive. Here we present a comprehensive catalog capable of selectively and exclusively excite almost arbitrary high-order waveguide modes of interest, leveraging silicon metasurface-patterned silicon nitride waveguides. By simultaneously engineering the phase-matched gradient of the metasurface and the vectorial spatial modal overlap between the nanoantenna near-field and target waveguide mode for excitation, either single or multiple high-order modes are successfully launched with high purity reaching 98% and broad bandwidth over 100 nm. Moreover, on-chip twisted light generators are also theoretically demonstrated with configurable OAM topological charge ell from -3 to +3, serving as a comprehensive framework for metasurface-enabled guided mode optics and motivating further applications such as versatile integrated couplers, demultiplexers, and mode-division multiplexing-based communication systems.
In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experime
A novel terahertz hybrid waveguide chip consisting of silicon photonic crystals sandwiched in parallel gold plates is developed. Both simulation and experimental results demonstrate that the hybrid waveguide offers a wide single-mode transmission win
We show that symmetric planar waveguides made of a film composed of a type II hyperbolic metamaterial, where the optical axis (OA) lays parallel to the waveguide interfaces, result in a series of topological transitions in the dispersion diagram as t
A flexible and efficient method for fully vectorial modal analysis of 3D dielectric optical waveguides with arbitrary 2D cross-sections is proposed. The technique is based on expansion of each modal component in some a priori defined functions define
We report a novel approach for on-chip electrical detection of the radiation guided by dielectric-loaded surface plasmon polariton waveguides (DLSPPW) and DLSPPW-based components. The detection is realized by fabricating DLSPPW components on the surf