ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of Super-Robust Geometric Control in a Superconducting Circuit

85   0   0.0 ( 0 )
 نشر من قبل Yuan Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Geometric phases accompanying adiabatic quantum evolutions can be used to construct robust quantum control for quantum information processing due to their noise-resilient feature. A significant development along this line is to construct geometric gates using nonadiabatic quantum evolutions to reduce errors due to decoherence. However, it has been shown that nonadiabatic geometric gates are not necessarily more robust than dynamical ones, in contrast to an intuitive expectation. Here we experimentally investigate this issue for the case of nonadiabatic holonomic quantum computation~(NHQC) and show that conventional NHQC schemes cannot guarantee the expected robustness due to a cross coupling to the states outside the computational space. We implement a new set of constraints for gate construction in order to suppress such cross coupling to achieve an enhanced robustness. Using a superconducting quantum circuit, we demonstrate high-fidelity holonomic gates whose infidelity against quasi-static transverse errors can be suppressed up to the fourth order, instead of the second order in conventional NHQC and dynamical gates. In addition, we explicitly measure the accumulated dynamical phase due to the above mentioned cross coupling and verify that it is indeed much reduced in our NHQC scheme. We further demonstrate a protocol for constructing two-qubit NHQC gates also with an enhanced robustness.



قيم البحث

اقرأ أيضاً

We propose a superconducting quantum circuit based on a general symmetry principle -- combinatorial gauge symmetry -- designed to emulate topologically-ordered quantum liquids and serve as a foundation for the construction of topological qubits. The proposed circuit exhibits rich features: in the classical limit of large capacitances its ground state consists of two superimposed loop structures; one is a crystal of small loops containing disordered $U(1)$ degrees of freedom, and the other is a gas of loops of all sizes associated to $mathbb{Z}_2$ topological order. We show that these classical results carry over to the quantum case, where phase fluctuations arise from the presence of finite capacitances, yielding ${mathbb Z}_2$ quantum topological order. A key feature of the exact gauge symmetry is that amplitudes connecting different ${mathbb Z}_2$ loop states arise from paths having zero classical energy cost. As a result, these amplitudes are controlled by dimensional confinement rather than tunneling through energy barriers. We argue that this effect may lead to larger energy gaps than previous proposals which are limited by such barriers, potentially making it more likely for a topological phase to be experimentally observable. Finally, we discuss how our superconducting circuit realization of combinatorial gauge symmetry can be implemented in practice.
Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possib le, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable system consisting of a qutrit coupled to two qubits. This system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates. Furthermore, the system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of the presented circuit makes it a promising candidate to serve as a building block for larger networks capable of performing involved quantum computational tasks.
70 - Kai Xu , Wen Ning , Xin-Jie Huang 2020
Holonomies, arising from non-Abelian geometric transformations of quantum states in Hilbert space, offer a promising way for quantum computation. These holonomies are not commutable and thus can be used for the realization of a universal set of quant um logic gates, where the global geometric feature may result in some noise-resilient advantages. Here we report the first on-chip realization of a non-Abelian geometric controlled-Not gate in a superconducting circuit, which is a building block for constructing a holonomic quantum computer. The conditional dynamics is achieved in an all-to-all connected architecture involving multiple frequency-tunable superconducting qubits controllably coupled to a resonator; a holonomic gate between any two qubits can be implemented by tuning their frequencies on resonance with the resonator and applying a two-tone drive to one of them. This gate represents an important step towards the all-geometric realization of scalable quantum computation on a superconducting platform.
Advanced control in Lambda ($Lambda$) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics eme rging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the $Lambda$-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime.
We present a scalable scheme for executing the error-correction cycle of a monolithic surface-code fabric composed of fast-flux-tuneable transmon qubits with nearest-neighbor coupling. An eight-qubit unit cell forms the basis for repeating both the q uantum hardware and coherent control, enabling spatial multiplexing. This control uses three fixed frequencies for all single-qubit gates and a unique frequency detuning pattern for each qubit in the cell. By pipelining the interaction and readout steps of ancilla-based $X$- and $Z$-type stabilizer measurements, we can engineer detuning patterns that avoid all second-order transmon-transmon interactions except those exploited in controlled-phase gates, regardless of fabric size. Our scheme is applicable to defect-based and planar logical qubits, including lattice surgery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا