ﻻ يوجد ملخص باللغة العربية
Geometric phases accompanying adiabatic quantum evolutions can be used to construct robust quantum control for quantum information processing due to their noise-resilient feature. A significant development along this line is to construct geometric gates using nonadiabatic quantum evolutions to reduce errors due to decoherence. However, it has been shown that nonadiabatic geometric gates are not necessarily more robust than dynamical ones, in contrast to an intuitive expectation. Here we experimentally investigate this issue for the case of nonadiabatic holonomic quantum computation~(NHQC) and show that conventional NHQC schemes cannot guarantee the expected robustness due to a cross coupling to the states outside the computational space. We implement a new set of constraints for gate construction in order to suppress such cross coupling to achieve an enhanced robustness. Using a superconducting quantum circuit, we demonstrate high-fidelity holonomic gates whose infidelity against quasi-static transverse errors can be suppressed up to the fourth order, instead of the second order in conventional NHQC and dynamical gates. In addition, we explicitly measure the accumulated dynamical phase due to the above mentioned cross coupling and verify that it is indeed much reduced in our NHQC scheme. We further demonstrate a protocol for constructing two-qubit NHQC gates also with an enhanced robustness.
We propose a superconducting quantum circuit based on a general symmetry principle -- combinatorial gauge symmetry -- designed to emulate topologically-ordered quantum liquids and serve as a foundation for the construction of topological qubits. The
Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possib
Holonomies, arising from non-Abelian geometric transformations of quantum states in Hilbert space, offer a promising way for quantum computation. These holonomies are not commutable and thus can be used for the realization of a universal set of quant
Advanced control in Lambda ($Lambda$) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics eme
We present a scalable scheme for executing the error-correction cycle of a monolithic surface-code fabric composed of fast-flux-tuneable transmon qubits with nearest-neighbor coupling. An eight-qubit unit cell forms the basis for repeating both the q