ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Seesaw Model with a Modular $S^{}_4$ Symmetry: Lepton Flavor Mixing and Warm Dark Matter

107   0   0.0 ( 0 )
 نشر من قبل Xinyi Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a systematic investigation on simple inverse seesaw models for neutrino masses and flavor mixing based on the modular $S^{}_4$ symmetry. Two right-handed neutrinos and three extra fermion singlets are introduced to account for light neutrino masses through the inverse seesaw mechanism, and to provide a keV-mass sterile neutrino as the candidate for warm dark matter in our Universe. Considering all possible modular forms with weights no larger than four, we obtain twelve models, among which we find one is in excellent agreement with the observed lepton mass spectra and flavor mixing. Moreover, we explore the allowed range of the sterile neutrino mass and mixing angles, by taking into account the direct search of $X$-ray line and the Lyman-$alpha$ observations. The model predictions for neutrino mixing parameters and the dark matter abundance will be readily testable in future neutrino oscillation experiments and cosmological observations.



قيم البحث

اقرأ أيضاً

We discuss an inverse seesaw model based on right-handed fermion specific $U(1)$ gauge symmetry and $A_4$-modular symmetry. These symmetries forbid unnecessary terms and restrict structures of Yukawa interactions which are relevant to inverse seesaw mechanism. Then we can obtain some predictions in neutrino sector such as Dirac-CP phase and sum of neutrino mass, which are shown by our numerical analysis. Besides the relation among masses of heavy pseudo-Dirac neutrino can be obtained since it is also restricted by the modular symmetry. We also discuss implications to lepton flavor violation and collider physics in our model.
152 - Xin Wang , Bingrong Yu , Shun Zhou 2020
In this paper, we investigate the double covering of modular $Gamma^{}_5 simeq A^{}_5$ group and derive all the modular forms of weight one for the first time. The modular forms of higher weights are also explicitly given by decomposing the direct pr oducts of weight-one forms. For the double covering group $Gamma^prime_5 simeq A^prime_5$, there exist two inequivalent two-dimensional irreducible representations, into which we can assign two right-handed neutrino singlets in the minimal seesaw model. Two concrete models with such a salient feature have been constructed to successfully explain lepton mass spectra and flavor mixing pattern. The allowed parameter space for these two minimal scenarios has been numerically explored, and analytically studied with some reasonable assumptions.
284 - Guan-nan Li , Gang Guo , Bo Ren 2012
We study phenomenological implications of a radiative inverse seesaw dark matter model. In this model, because neutrino masses are generated at two loop level with inverse seesaw, the new physics mass scale can be as low as a few hundred GeV and the model also naturally contain dark matter candidate. The Yukawa couplings linking the SM leptons and new particles can be large. This can lead to large lepton flavor violating effects. We find that future experimental data on $mu to e gamma$ and $mu - e$ conversion can further test the model. The new charged particles can affect significantly the $h to gamma gamma$ branching ratio in the SM. The model is able to explain the deviation between the SM prediction and the LHC data. We also study some LHC signatures of the new particles in the model.
We consider the inverse Seesaw scenario for neutrino masses with the approximate Lepton number symmetry broken dynamically by a scalar with Lepton number two. We show that the Majoron associated to the spontaneous symmetry breaking can alleviate the Hubble tension through its contribution to $Delta N_text{eff}$ and late decays to neutrinos. Among the additional fermionic states required for realizing the inverse Seesaw mechanism, sterile neutrinos at the keV-MeV scale can account for all the dark matter component of the Universe if produced via freeze-in from the decays of heavier degrees of freedom.
We present an S$_4$ flavour symmetric model within a minimal seesaw framework resulting in mass matrices that leads to TM$_1$ mixing. Minimal seesaw is realized by adding two right-handed neutrinos to the Standard Model. The model predicts Normal Hie rarchy (NH) for neutrino masses. Using the constrained six-dimensional parameter space, we have evaluated the effective Majorana neutrino mass, which is the parameter of interest in neutrinoless double beta decay experiments. The possibility of explaining baryogenesis via resonant leptogenesis is also examined within the model. A non-zero, resonantly enhanced CP asymmetry generated from the decay of right-handed neutrinos at the TeV scale is studied, considering flavour effects. The evolution of lepton asymmetry is discussed by solving the set of Boltzmann equations numerically and obtain the value of baryon asymmetry to be $lvert eta_B rvert = 6.3 times 10^{-10}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا