ﻻ يوجد ملخص باللغة العربية
Conditional Variational AutoEncoder (CVAE) effectively increases the diversity and informativeness of responses in open-ended dialogue generation tasks through enriching the context vector with sampled latent variables. However, due to the inherent one-to-many and many-to-one phenomena in human dialogues, the sampled latent variables may not correctly reflect the contexts semantics, leading to irrelevant and incoherent generated responses. To resolve this problem, we propose Self-separated Conditional Variational AutoEncoder (abbreviated as SepaCVAE) that introduces group information to regularize the latent variables, which enhances CVAE by improving the responses relevance and coherence while maintaining their diversity and informativeness. SepaCVAE actively divides the input data into groups, and then widens the absolute difference between data pairs from distinct groups, while narrowing the relative distance between data pairs in the same group. Empirical results from automatic evaluation and detailed analysis demonstrate that SepaCVAE can significantly boost responses in well-established open-domain dialogue datasets.
Existing open-domain dialogue generation models are usually trained to mimic the gold response in the training set using cross-entropy loss on the vocabulary. However, a good response does not need to resemble the gold response, since there are multi
Generating conversational gestures from speech audio is challenging due to the inherent one-to-many mapping between audio and body motions. Conventional CNNs/RNNs assume one-to-one mapping, and thus tend to predict the average of all possible target
Many existing conversation models that are based on the encoder-decoder framework have focused on ways to make the encoder more complicated to enrich the context vectors so as to increase the diversity and informativeness of generated responses. Howe
Although substantial efforts have been made to learn disentangled representations under the variational autoencoder (VAE) framework, the fundamental properties to the dynamics of learning of most VAE models still remain unknown and under-investigated
Gravitational wave (GW) detection is now commonplace and as the sensitivity of the global network of GW detectors improves, we will observe $mathcal{O}(100)$s of transient GW events per year. The current methods used to estimate their source paramete