ﻻ يوجد ملخص باللغة العربية
Partial differential equations and variational problems can be solved with physics informed neural networks (PINNs). The unknown field is approximated with neural networks. Minimizing the residuals of the static Maxwell equation at collocation points or the magnetostatic energy, the weights of the neural network are adjusted so that the neural network solution approximates the magnetic vector potential. This way, the magnetic flux density for a given magnetization distribution can be estimated. With the magnetization as an additional unknown, inverse magnetostatic problems can be solved. Augmenting the magnetostatic energy with additional energy terms, micromagnetic problems can be solved. We demonstrate the use of physics informed neural networks for solving magnetostatic problems, computing the magnetization for inverse problems, and calculating the demagnetization curves for two-dimensional geometries.
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems. The concept of PINNs is expanded to learn not only the solution of one particular differential equation but the solutions
Physics-informed neural networks (PINNs) are effective in solving integer-order partial differential equations (PDEs) based on scattered and noisy data. PINNs employ standard feedforward neural networks (NNs) with the PDEs explicitly encoded into the
Inverse design arises in a variety of areas in engineering such as acoustic, mechanics, thermal/electronic transport, electromagnetism, and optics. Topology optimization is a major form of inverse design, where we optimize a designed geometry to achi
Multifidelity simulation methodologies are often used in an attempt to judiciously combine low-fidelity and high-fidelity simulation results in an accuracy-increasing, cost-saving way. Candidates for this approach are simulation methodologies for whi
We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach combining deep learning with probabilistic graphical models (PGMs) that acts as a surrogate for physics-based representations of multiscale and multiphysics systems