ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Language Coverage Bias for Neural Machine Translation

72   0   0.0 ( 0 )
 نشر من قبل Shuo Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Language coverage bias, which indicates the content-dependent differences between sentence pairs originating from the source and target languages, is important for neural machine translation (NMT) because the target-original training data is not well exploited in current practice. By carefully designing experiments, we provide comprehensive analyses of the language coverage bias in the training data, and find that using only the source-original data achieves comparable performance with using full training data. Based on these observations, we further propose two simple and effective approaches to alleviate the language coverage bias problem through explicitly distinguishing between the source- and target-original training data, which consistently improve the performance over strong baselines on six WMT20 translation tasks. Complementary to the translationese effect, language coverage bias provides another explanation for the performance drop caused by back-translation. We also apply our approach to both back- and forward-translation and find that mitigating the language coverage bias can improve the performance of both the two representative data augmentation methods and their tagged variants.



قيم البحث

اقرأ أيضاً

We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue tha t these problems are closely related and both rooted in label bias. We show that correcting the brevity problem almost eliminates the beam problem; we compare some commonly-used methods for doing this, finding that a simple per-word reward works well; and we introduce a simple and quick way to tune this reward using the perceptron algorithm.
Unsupervised neural machine translation(NMT) is associated with noise and errors in synthetic data when executing vanilla back-translations. Here, we explicitly exploits language model(LM) to drive construction of an unsupervised NMT system. This fea tures two steps. First, we initialize NMT models using synthetic data generated via temporary statistical machine translation(SMT). Second, unlike vanilla back-translation, we formulate a weight function, that scores synthetic data at each step of subsequent iterative training; this allows unsupervised training to an improved outcome. We present the detailed mathematical construction of our method. Experimental WMT2014 English-French, and WMT2016 English-German and English-Russian translation tasks revealed that our method outperforms the best prior systems by more than 3 BLEU points.
183 - Xu Tan , Jiale Chen , Di He 2019
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low- resource and zero-shot translation. Given there are thousands of languages in the world and some of them are very different, it is extremely burdensome to handle them all in a single model or use a separate model for each language pair. Therefore, given a fixed resource budget, e.g., the number of models, how to determine which languages should be supported by one model is critical to multilingual NMT, which, unfortunately, has been ignored by previous work. In this work, we develop a framework that clusters languages into different groups and trains one multilingual model for each cluster. We study two methods for language clustering: (1) using prior knowledge, where we cluster languages according to language family, and (2) using language embedding, in which we represent each language by an embedding vector and cluster them in the embedding space. In particular, we obtain the embedding vectors of all the languages by training a universal neural machine translation model. Our experiments on 23 languages show that the first clustering method is simple and easy to understand but leading to suboptimal translation accuracy, while the second method sufficiently captures the relationship among languages well and improves the translation accuracy for almost all the languages over baseline methods
Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To allevi ate the need for expensive parallel corpora by TLM, in this work, we incorporate the translation information from dictionaries into the pretraining process and propose a novel Bilingual Dictionary-based Language Model (BDLM). We evaluate our BDLM in Chinese, English, and Romanian. For Chinese-English, we obtained a 55.0 BLEU on WMT-News19 (Tiedemann, 2012) and a 24.3 BLEU on WMT20 news-commentary, outperforming the Vanilla Transformer (Vaswani et al., 2017) by more than 8.4 BLEU and 2.3 BLEU, respectively. According to our results, the BDLM also has advantages on convergence speed and predicting rare words. The increase in BLEU for WMT16 Romanian-English also shows its effectiveness in low-resources language translation.
93 - Junwei Liao , Yu Shi , Ming Gong 2021
Recently, universal neural machine translation (NMT) with shared encoder-decoder gained good performance on zero-shot translation. Unlike universal NMT, jointly trained language-specific encoders-decoders aim to achieve universal representation acros s non-shared modules, each of which is for a language or language family. The non-shared architecture has the advantage of mitigating internal language competition, especially when the shared vocabulary and model parameters are restricted in their size. However, the performance of using multiple encoders and decoders on zero-shot translation still lags behind universal NMT. In this work, we study zero-shot translation using language-specific encoders-decoders. We propose to generalize the non-shared architecture and universal NMT by differentiating the Transformer layers between language-specific and interlingua. By selectively sharing parameters and applying cross-attentions, we explore maximizing the representation universality and realizing the best alignment of language-agnostic information. We also introduce a denoising auto-encoding (DAE) objective to jointly train the model with the translation task in a multi-task manner. Experiments on two public multilingual parallel datasets show that our proposed model achieves a competitive or better results than universal NMT and strong pivot baseline. Moreover, we experiment incrementally adding new language to the trained model by only updating the new model parameters. With this little effort, the zero-shot translation between this newly added language and existing languages achieves a comparable result with the model trained jointly from scratch on all languages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا