ﻻ يوجد ملخص باللغة العربية
We study $(epsilon, delta)$-PAC best arm identification, where a decision-maker must identify an $epsilon$-optimal arm with probability at least $1 - delta$, while minimizing the number of arm pulls (samples). Most of the work on this topic is in the sequential setting, where there is no constraint on the time taken to identify such an arm; this allows the decision-maker to pull one arm at a time. In this work, the decision-maker is given a deadline of $T$ rounds, where, on each round, it can adaptively choose which arms to pull and how many times to pull them; this distinguishes the number of decisions made (i.e., time or number of rounds) from the number of samples acquired (cost). Such situations occur in clinical trials, where one may need to identify a promising treatment under a deadline while minimizing the number of test subjects, or in simulation-based studies run on the cloud, where we can elastically scale up or down the number of virtual machines to conduct as many experiments as we wish, but need to pay for the resource-time used. As the decision-maker can only make $T$ decisions, she may need to pull some arms excessively relative to a sequential algorithm in order to perform well on all possible problems. We formalize this added difficulty with two hardness results that indicate that unlike sequential settings, the ability to adapt to the problem difficulty is constrained by the finite deadline. We propose Elastic Batch Racing (EBR), a novel algorithm for this setting and bound its sample complexity, showing that EBR is optimal with respect to both hardness results. We present simulations evaluating EBR in this setting, where it outperforms baselines by several orders of magnitude.
We propose a generalization of the best arm identification problem in stochastic multi-armed bandits (MAB) to the setting where every pull of an arm is associated with delayed feedback. The delay in feedback increases the effective sample complexity
In the classical best arm identification (Best-$1$-Arm) problem, we are given $n$ stochastic bandit arms, each associated with a reward distribution with an unknown mean. We would like to identify the arm with the largest mean with probability at lea
We give a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the `Track-and-Stop strategy, which we prove to be asymptoticall
We study a federated variant of the best-arm identification problem in stochastic multi-armed bandits: a set of clients, each of whom can sample only a subset of the arms, collaborate via a server to identify the best arm (i.e., the arm with the high
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-ba