ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Learning and its Application for Time-Series Prediction

116   0   0.0 ( 0 )
 نشر من قبل Nhuong Nguyen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme events are occurrences whose magnitude and potential cause extensive damage on people, infrastructure, and the environment. Motivated by the extreme nature of the current global health landscape, which is plagued by the coronavirus pandemic, we seek to better understand and model extreme events. Modeling extreme events is common in practice and plays an important role in time-series prediction applications. Our goal is to (i) compare and investigate the effect of some common extreme events modeling methods to explore which method can be practical in reality and (ii) accelerate the deep learning training process, which commonly uses deep recurrent neural network (RNN), by implementing the asynchronous local Stochastic Gradient Descent (SGD) framework among multiple compute nodes. In order to verify our distributed extreme events modeling, we evaluate our proposed framework on a stock data set S&P500, with a standard recurrent neural network. Our intuition is to explore the (best) extreme events modeling method which could work well under the distributed deep learning setting. Moreover, by using asynchronous distributed learning, we aim to significantly reduce the communication cost among the compute nodes and central server, which is the main bottleneck of almost all distributed learning frameworks. We implement our proposed work and evaluate its performance on representative data sets, such as S&P500 stock in $5$-year period. The experimental results validate the correctness of the design principle and show a significant training duration reduction upto $8$x, compared to the baseline single compute node. Our results also show that our proposed work can achieve the same level of test accuracy, compared to the baseline setting.



قيم البحث

اقرأ أيضاً

Distributed Machine Learning suffers from the bottleneck of synchronization to all-reduce workers updates. Previous works mainly consider better network topology, gradient compression, or stale updates to speed up communication and relieve the bottle neck. However, all these works ignore the importance of reducing the scale of synchronized elements and inevitable serial executed operators. To address the problem, our work proposes the Divide-and-Shuffle Synchronization(DS-Sync), which divides workers into several parallel groups and shuffles group members. DS-Sync only synchronizes the workers in the same group so that the scale of a group is much smaller. The shuffle of workers maintains the algorithms convergence speed, which is interpreted in theory. Comprehensive experiments also show the significant improvements in the latest and popular models like Bert, WideResnet, and DeepFM on challenging datasets.
Predicting the spread and containment of COVID-19 is a challenge of utmost importance that the broader scientific community is currently facing. One of the main sources of difficulty is that a very limited amount of daily COVID-19 case data is availa ble, and with few exceptions, the majority of countries are currently in the exponential spread stage, and thus there is scarce information available which would enable one to predict the phase transition between spread and containment. In this paper, we propose a novel approach to predicting the spread of COVID-19 based on dictionary learning and online nonnegative matrix factorization (online NMF). The key idea is to learn dictionary patterns of short evolution instances of the new daily cases in multiple countries at the same time, so that their latent correlation structures are captured in the dictionary patterns. We first learn such patterns by minibatch learning from the entire time-series and then further adapt them to the time-series by online NMF. As we progressively adapt and improve the learned dictionary patterns to the more recent observations, we also use them to make one-step predictions by the partial fitting. Lastly, by recursively applying the one-step predictions, we can extrapolate our predictions into the near future. Our prediction results can be directly attributed to the learned dictionary patterns due to their interpretability.
166 - Kevin Hsieh 2019
The usability and practicality of any machine learning (ML) applications are largely influenced by two critical but hard-to-attain factors: low latency and low cost. Unfortunately, achieving low latency and low cost is very challenging when ML depend s on real-world data that are highly distributed and rapidly growing (e.g., data collected by mobile phones and video cameras all over the world). Such real-world data pose many challenges in communication and computation. For example, when training data are distributed across data centers that span multiple continents, communication among data centers can easily overwhelm the limited wide-area network bandwidth, leading to prohibitively high latency and high cost. In this dissertation, we demonstrate that the latency and cost of ML on highly-distributed and rapidly-growing data can be improved by one to two orders of magnitude by designing ML systems that exploit the characteristics of ML algorithms, ML model structures, and ML training/serving data. We support this thesis statement with three contributions. First, we design a system that provides both low-latency and low-cost ML serving (inferencing) over large-scale and continuously-growing datasets, such as videos. Second, we build a system that makes ML training over geo-distributed datasets as fast as training within a single data center. Third, we present a first detailed study and a system-level solution on a fundamental and largely overlooked problem: ML training over non-IID (i.e., not independent and identically distributed) data partitions (e.g., facial images collected by cameras varies according to the demographics of each cameras location).
Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device may contain the users private data, which is challenging the current detection approaches as user privacy is calling for the public concern in recent years. With this focus, this paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT. Specifically, we first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability. Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies. The AMCNN-LSTM model uses attention mechanism-based CNN units to capture important fine-grained features, thereby preventing memory loss and gradient dispersion problems. Furthermore, this model retains the advantages of LSTM unit in predicting time series data. Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textit{k} selection to improve communication efficiency. Extensive experiment studies on four real-world datasets demonstrate that the proposed framework can accurately and timely detect anomalies and also reduce the communication overhead by 50% compared to the federated learning framework that does not use a gradient compression scheme.
Traditional machine learning methods face two main challenges in dealing with healthcare predictive analytics tasks. First, the high-dimensional nature of healthcare data needs labor-intensive and time-consuming processes to select an appropriate set of features for each new task. Secondly, these methods depend on feature engineering to capture the sequential nature of patient data, which may not adequately leverage the temporal patterns of the medical events and their dependencies. Recent deep learning methods have shown promising performance for various healthcare prediction tasks by addressing the high-dimensional and temporal challenges of medical data. These methods can learn useful representations of key factors (e.g., medical concepts or patients) and their interactions from high-dimensional raw (or minimally-processed) healthcare data. In this paper we systemically reviewed studies focused on using deep learning as the prediction model to leverage patient time series data for a healthcare prediction task from methodological perspective. To identify relevant studies, MEDLINE, IEEE, Scopus and ACM digital library were searched for studies published up to February 7th 2021. We found that researchers have contributed to deep time series prediction literature in ten research streams: deep learning models, missing value handling, irregularity handling, patient representation, static data inclusion, attention mechanisms, interpretation, incorporating medical ontologies, learning strategies, and scalability. This study summarizes research insights from these literature streams, identifies several critical research gaps, and suggests future research opportunities for deep learning in patient time series data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا