ﻻ يوجد ملخص باللغة العربية
In this paper, we study the prescribed $Q$-curvature flow equation on a arbitrary even dimensional closed Riemannian manifold $(M,g)$, which was introduced by S. Brendle in cite{B2003}, where he proved the flow exists for long time and converges at infinity if the GJMS operator is weakly positive with trivial kernel and $int_M Qdmu < (n-1)!Volleft( S^n right) $. In this paper we study the critical case that $int_M Qdmu = (n-1)!Volleft( S^n right)$, we will prove the convergence of the flow under some geometric hypothesis. In particular, this gives a new proof of Li-Li-Lius existence result in cite{LLL2012} in dimensiona 4 and extend the work of Li-Zhu cite{LZ2019} in dimension 2 to general even dimensions. In the proof, we give a explicit expression of the limit of the corresponding energy functional when the blow up occurs.
On Riemannian manifolds of dimension 4, for prescribed scalar curvature equation, under lipschitzian condition on the prescribed curvature, we have an uniform estimate for the solutions of the equation if we control their minimas.
We consider the heat equation associated with a class of hypoelliptic operators of Kolmogorov-Fokker-Planck type in dimension two. We explicitly compute the first meaningful coefficient of the small time asymptotic expansion of the heat kernel on the
We will give a new proof of the existence of hypercylinder expander of the inverse mean curvature flow which is a radially symmetric homothetic soliton of the inverse mean curvature flow in $mathbb{R}^ntimes mathbb{R}$, $nge 2$, of the form $(r,y(r))
We consider an evolution problem associated to the Kazdan-Warner equation on a closed Riemann surface $(Sigma,g)$ begin{align*} -Delta_{g}u=8pileft(frac{he^{u}}{int_{Sigma}he^{u}{rm d}mu_{g}}-frac{1}{int_{Sigma}{rm d}mu_{g}}right) end{align*} w
We will give a new proof of a recent result of P.~Daskalopoulos, G.Huisken and J.R.King ([DH] and reference [7] of [DH]) on the existence of self-similar solution of the inverse mean curvature flow which is the graph of a radially symmetric solution