ترغب بنشر مسار تعليمي؟ اضغط هنا

The $theta$-density in Arakelov geometry

99   0   0.0 ( 0 )
 نشر من قبل Xiaozong Wang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Xiaozong Wang




اسأل ChatGPT حول البحث

In this article, we construct a $theta$-density for the global sections of ample Hermitian line bundles on a projective arithmetic variety. We show that this density has similar behaviour to the usual density in the Arakelov geometric setting, where only global sections of norm smaller than $1$ are considered. In particular, we prove the analogue by $theta$-density of two Bertini kind theorems, on irreducibility and regularity respectively.



قيم البحث

اقرأ أيضاً

249 - Nikolai Durov 2007
This work is dedicated to a new completely algebraic approach to Arakelov geometry, which doesnt require the variety under consideration to be generically smooth or projective. In order to construct such an approach we develop a theory of generalized rings and schemes, which include classical rings and schemes together with exotic objects such as F_1 (field with one element), Z_infty (real integers), T (tropical numbers) etc., thus providing a systematic way of studying such objects. This theory of generalized rings and schemes is developed up to construction of algebraic K-theory, intersection theory and Chern classes. Then existence of Arakelov models of algebraic varieties over Q is shown, and our general results are applied to such models.
The purpose of this book is to build up the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for the researches of arithmetic geometry in several directions.
In this paper, we extend Delignes functorial Riemann-Roch isomorphism for hermitian holomorphic line bundles on Riemann surfaces to the case of flat, not necessarily unitary connections. The Quillen metric and star-product of Gillet-Soule are replace d with complex valued logarithms. On the determinant of cohomology side, the idea goes back to Fays holomorphic extension of determinants of Dolbeault laplacians, and it is shown here to be equivalent to the holomorphic Cappell-Miller torsion. On the Deligne pairing side, the logarithm is a refinement of the intersection connections considered in previous work. The construction naturally leads to an Arakelov theory for flat line bundles on arithmetic surfaces and produces arithmetic intersection numbers valued in ${mathbb C}/pi i {mathbb Z}$. In this context we prove an arithmetic Riemann-Roch theorem. This realizes a program proposed by Cappell-Miller to show that the holomorphic torsion exhibits properties similar to those of the Quillen metric proved by Bismut, Gillet and Soule. Finally, we give examples that clarify the kind of invariants that the formalism captures; namely, periods of differential forms.
370 - Eckart Viehweg 2008
We discuss several numerical conditions for families of projective varieties or variations of Hodge structures.
82 - Igor Nikolaev 2021
We recast elliptic surfaces over the projective line in terms of the non-commutative tori with real multiplication. The correspondence is used to study the Picard numbers, the ranks and the minimal models of such surfaces. As an example, we calculate the Picard numbers of elliptic surfaces with complex multiplication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا