ترغب بنشر مسار تعليمي؟ اضغط هنا

The Optimal Decay Rate of Strong Solution for the Compressible Nematic Liquid Crystal Equations with Large Initial Data

87   0   0.0 ( 0 )
 نشر من قبل Zhengzhen Wei
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is devoted to establishing the optimal decay rate of the global large solution to compressible nematic liquid crystal equations when the initial perturbation is large and belongs to $L^1(mathbb R^3)cap H^2(mathbb R^3)$. More precisely, we show that the first and second order spatial derivatives of large solution $(rho-1, u, abla d)(t)$ converges to zero at the $L^2-$rate $(1+t)^{-frac54}$ and $L^2-$rate $(1+t)^{-frac74}$ respectively, which are optimal in the sense that they coincide with the decay rates of solution to the heat equation. Thus, we establish optimal decay rate for the second order derivative of global large solution studied in [12,18] since the compressible nematic liquid crystal flow becomes the compressible Navier-Stokes equations when the director is a constant vector. It is worth noticing that there is no decay loss for the highest-order spatial derivative of solution although the associated initial perturbation is large. Moreover, we also establish the lower bound of decay rates of $(rho-1, u, abla d)(t)$ itself and its spatial derivative, which coincide with the upper one. Therefore, the decay rates of global large solution $ abla^2(rho-1,u, abla d)(t)$ $(k=0,1,2)$ are actually optimal.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the convergence of the global large solution to its associated constant equilibrium state with an explicit decay rate for the compressible Navier-Stokes equations in three-dimensional whole space. Suppose the initial dat a belongs to some negative Sobolev space instead of Lebesgue space, we not only prove the negative Sobolev norms of the solution being preserved along time evolution, but also obtain the convergence of the global large solution to its associated constant equilibrium state with algebra decay rate. Besides, we shall show that the decay rate of the first order spatial derivative of large solution of the full compressible Navier-Stokes equations converging to zero in $L^2-$norm is $(1+t)^{-5/4}$, which coincides with the heat equation. This extends the previous decay rate $(1+t)^{-3/4}$ obtained in cite{he-huang-wang2}.
203 - Yixuan Wang , Zhaoyang Qiu 2020
We study the three-dimensional compressible Navier-Stokes equations coupled with the $Q$-tensor equation perturbed by a multiplicative stochastic force, which describes the motion of nematic liquid crystal flows. The local existence and uniqueness of strong pathwise solution up to a positive stopping time is established where ``strong is in both PDE and probability sense. The proof relies on the Galerkin approximation scheme, stochastic compactness, identification of the limit, uniqueness and a cutting-off argument. In the stochastic setting, we develop an extra layer approximation to overcome the difficulty arising from the stochastic integral while constructing the approximate solution. Due to the complex structure of the coupled system, the estimates of the high-order items are also the challenging part in the article.
62 - Jinkai Li , Mingjie Li 2021
In this paper, we consider the Cauchy problem to the planar non-resistive magnetohydrodynamic equations without heat conductivity, and establish the global well-posedness of strong solutions with large initial data. The key ingredient of the proof is to establish the a priori estimates on the effective viscous flux and a newly introduced transverse effective viscous flux vector field inducted by the transverse magnetic field. The initial density is assumed only to be uniformly bounded and of finite mass and, in particular, the vacuum and discontinuities of the density are allowed.
We establish the existence and uniqueness of local strong pathwise solutions to the stochastic Boussinesq equations with partial diffusion term forced by multiplicative noise on the torus in $mathbb{R}^{d},d=2,3$. The solution is strong in both PDE a nd probabilistic sense.In the two dimensional case, we prove the global existence of strong solutions to the Boussinesq equations forced by additive noise using a suitable stochastic analogue of a logarithmic Gronwalls lemma. After the global existence and uniqueness of strong solutions are established, the large deviation principle (LDP) is proved by the weak convergence method. The weak convergence is shown by a tightness argument in the appropriate functional space.
We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary compressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine solutions of the flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا