ﻻ يوجد ملخص باللغة العربية
This paper is devoted to establishing the optimal decay rate of the global large solution to compressible nematic liquid crystal equations when the initial perturbation is large and belongs to $L^1(mathbb R^3)cap H^2(mathbb R^3)$. More precisely, we show that the first and second order spatial derivatives of large solution $(rho-1, u, abla d)(t)$ converges to zero at the $L^2-$rate $(1+t)^{-frac54}$ and $L^2-$rate $(1+t)^{-frac74}$ respectively, which are optimal in the sense that they coincide with the decay rates of solution to the heat equation. Thus, we establish optimal decay rate for the second order derivative of global large solution studied in [12,18] since the compressible nematic liquid crystal flow becomes the compressible Navier-Stokes equations when the director is a constant vector. It is worth noticing that there is no decay loss for the highest-order spatial derivative of solution although the associated initial perturbation is large. Moreover, we also establish the lower bound of decay rates of $(rho-1, u, abla d)(t)$ itself and its spatial derivative, which coincide with the upper one. Therefore, the decay rates of global large solution $ abla^2(rho-1,u, abla d)(t)$ $(k=0,1,2)$ are actually optimal.
In this paper, we investigate the convergence of the global large solution to its associated constant equilibrium state with an explicit decay rate for the compressible Navier-Stokes equations in three-dimensional whole space. Suppose the initial dat
We study the three-dimensional compressible Navier-Stokes equations coupled with the $Q$-tensor equation perturbed by a multiplicative stochastic force, which describes the motion of nematic liquid crystal flows. The local existence and uniqueness of
In this paper, we consider the Cauchy problem to the planar non-resistive magnetohydrodynamic equations without heat conductivity, and establish the global well-posedness of strong solutions with large initial data. The key ingredient of the proof is
We establish the existence and uniqueness of local strong pathwise solutions to the stochastic Boussinesq equations with partial diffusion term forced by multiplicative noise on the torus in $mathbb{R}^{d},d=2,3$. The solution is strong in both PDE a
We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary compressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine solutions of the flow.