ﻻ يوجد ملخص باللغة العربية
Robots frequently need to perceive object attributes, such as red, heavy, and empty, using multimodal exploratory actions, such as look, lift, and shake. Robot attribute learning algorithms aim to learn an observation model for each perceivable attribute given an exploratory action. Once the attribute models are learned, they can be used to identify attributes of new objects, answering questions, such as Is this object red and empty? Attribute learning and identification are being treated as two separate problems in the literature. In this paper, we first define a new problem called online robot attribute learning (On-RAL), where the robot works on attribute learning and attribute identification simultaneously. Then we develop an algorithm called information-theoretic reward shaping (ITRS) that actively addresses the trade-off between exploration and exploitation in On-RAL problems. ITRS was compared with competitive robot attribute learning baselines, and experimental results demonstrate ITRS superiority in learning efficiency and identification accuracy.
A defining feature of sampling-based motion planning is the reliance on an implicit representation of the state space, which is enabled by a set of probing samples. Traditionally, these samples are drawn either probabilistically or deterministically
Small variance asymptotics is emerging as a useful technique for inference in large scale Bayesian non-parametric mixture models. This paper analyses the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under sm
For robots to coexist with humans in a social world like ours, it is crucial that they possess human-like social interaction skills. Programming a robot to possess such skills is a challenging task. In this paper, we propose a Multimodal Deep Q-Netwo
Mixed-integer convex programming (MICP) has seen significant algorithmic and hardware improvements with several orders of magnitude solve time speedups compared to 25 years ago. Despite these advances, MICP has been rarely applied to real-world robot
In this work, we present a multimodal system for active robot-object interaction using laser-based SLAM, RGBD images, and contact sensors. In the object manipulation task, the robot adjusts its initial pose with respect to obstacles and target object