ترغب بنشر مسار تعليمي؟ اضغط هنا

Collaborative Causal Discovery with Atomic Interventions

82   0   0.0 ( 0 )
 نشر من قبل Raghavendra Addanki
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new Collaborative Causal Discovery problem, through which we model a common scenario in which we have multiple independent entities each with their own causal graph, and the goal is to simultaneously learn all these causal graphs. We study this problem without the causal sufficiency assumption, using Maximal Ancestral Graphs (MAG) to model the causal graphs, and assuming that we have the ability to actively perform independent single vertex (or atomic) interventions on the entities. If the $M$ underlying (unknown) causal graphs of the entities satisfy a natural notion of clustering, we give algorithms that leverage this property and recovers all the causal graphs using roughly logarithmic in $M$ number of atomic interventions per entity. These are significantly fewer than $n$ atomic interventions per entity required to learn each causal graph separately, where $n$ is the number of observable nodes in the causal graph. We complement our results with a lower bound and discuss various extensions of our collaborative setting.



قيم البحث

اقرأ أيضاً

Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the tr aditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, because causal/counterfactual modeling can help us to think outside of the observational data for user modeling and personalization. In this paper, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommendation. We first provide a unified causal view of CF and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for $do$-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.
Learning the structure of a causal graphical model using both observational and interventional data is a fundamental problem in many scientific fields. A promising direction is continuous optimization for score-based methods, which efficiently learn the causal graph in a data-driven manner. However, to date, those methods require constrained optimization to enforce acyclicity or lack convergence guarantees. In this paper, we present ENCO, an efficient structure learning method for directed, acyclic causal graphs leveraging observational and interventional data. ENCO formulates the graph search as an optimization of independent edge likelihoods, with the edge orientation being modeled as a separate parameter. Consequently, we can provide convergence guarantees of ENCO under mild conditions without constraining the score function with respect to acyclicity. In experiments, we show that ENCO can efficiently recover graphs with hundreds of nodes, an order of magnitude larger than what was previously possible, while handling deterministic variables and latent confounders.
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified. Under assumptions about the data-generative process, the causal graph can often be identified up to an equivalence class. Proposing new realistic assumptions to circumscribe such equivalence classes is an active field of research. In this work, we propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables. We thus introduce typed directed acyclic graphs, in which variable types are used to determine the validity of causal relationships. We demonstrate, both theoretically and empirically, that the proposed assumptions can result in significant gains in the identification of the causal graph.
Promising results have driven a recent surge of interest in continuous optimization methods for Bayesian network structure learning from observational data. However, there are theoretical limitations on the identifiability of underlying structures ob tained from observational data alone. Interventional data provides much richer information about the underlying data-generating process. However, the extension and application of methods designed for observational data to include interventions is not straightforward and remains an open problem. In this paper we provide a general framework based on continuous optimization and neural networks to create models for the combination of observational and interventional data. The proposed method is even applicable in the challenging and realistic case that the identity of the intervened upon variable is unknown. We examine the proposed method in the setting of graph recovery both de novo and from a partially-known edge set. We establish strong benchmark results on several structure learning tasks, including structure recovery of both synthetic graphs as well as standard graphs from the Bayesian Network Repository.
We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearls Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to disco ver the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $alpha$-approximation algorithm where $alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا