ﻻ يوجد ملخص باللغة العربية
Using hydrodynamical simulations, we study how well the underlying gravitational potential of a galaxy cluster can be modelled dynamically with different types of tracers. In order to segregate different systematics and the effects of varying estimator performances, we first focus on applying a generic minimal assumption method (oPDF) to model the simulated haloes using the full 6-D phasespace information. We show that the halo mass and concentration can be recovered in an ensemble unbiased way, with a stochastic bias that varies from halo to halo, mostly reflecting deviations from steady state in the tracer distribution. The typical systematic uncertainty is $sim 0.17$ dex in the virial mass and $sim 0.17$ dex in the concentration as well when dark matter particles are used as tracers. The dynamical state of satellite galaxies are close to that of dark matter particles, while intracluster stars are less in a steady state, resulting in a $sim$ 0.26 dex systematic uncertainty in mass. Compared with galactic haloes hosting Milky-Way-like galaxies, cluster haloes show a larger stochastic bias in the recovered mass profiles. We also test the accuracy of using intracluster gas as a dynamical tracer modelled through a generalised hydrostatic equilibrium equation, and find a comparable systematic uncertainty in the estimated mass to that using dark matter. Lastly, we demonstrate that our conclusions are largely applicable to other steady-state dynamical models including the spherical Jeans equation, by quantitatively segregating their statistical efficiencies and robustness to systematics. We also estimate the limiting number of tracers that leads to the systematics-dominated regime in each case.
Many dynamical models of the Milky Way halo require assumptions that the distribution function of a tracer population should be independent of time (i.e., a steady state distribution function) and that the underlying potential is spherical. We study
The IceCube Neutrino Observatory instruments about 1 km$^3$ of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light from relativistic, charged particles. Most IceCube science goals rely on precise under
I review briefly some dynamical models of structures in the outer parts of disc galaxies, including models of polar rings, tidal tails and bridges. I then discuss the density distribution in the outer parts of discs. For this, I compare observations
Observations of high-redshift quasars provide information on the massive black holes (MBHs) powering them and the galaxies hosting them. Current observations of $z gtrsim 6$ hosts, at sub-mm wavelengths, trace the properties of cold gas, and these ar
The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar halos constructed from the Aquarius N-body simula