ﻻ يوجد ملخص باللغة العربية
Quasi-one-dimensional iron-based ladders and chains, with the 3$d$ iron electronic density $n = 6$, are attracting considerable attention. Recently, a new iron chain system Ba$_2$FeS$_3$, also with $n = 6$, was prepared under high-pressure and high-temperature conditions. Here, the magnetic and electronic phase diagrams are theoretically studied for this quasi-one-dimensional compound. Based on first-principles calculations, a strongly anisotropic one-dimensional electronic band behavior near the Fermi level was observed. In addition, a three-orbital electronic Hubbard model for this chain was constructed. Introducing the Hubbard and Hund couplings and studying the model via the density matrix renormalization group (DMRG) method, we studied the ground-state phase diagram. A robust staggered $uparrow$-$downarrow$-$uparrow$-$downarrow$ AFM region was unveiled in the chain direction, consistent with our density functional theory (DFT) calculations. Furthermore, at intermediate Hubbard $U$ coupling strengths, this system was found to display an orbital selective Mott phase (OSMP) with one localized orbital and two itinerant metallic orbitals. At very large $U/W$ ($W$ = bandwidth), the system displays Mott insulator characteristics, with two orbitals half-filled and one doubly occupied. Our results for high pressure Ba$_2$FeS$_3$ provide guidance to experimentalists and theorists working on this one-dimensional iron chalcogenide chain material.
The magnetic and electronic phase diagram of a model for the quasi-one-dimensional alkali metal iron selenide compound Na$_2$FeSe$_2$ is presented. The novelty of this material is that the valence of iron is Fe$^{2+}$ contrary to most other iron-chai
The recent discovery of superconductivity in the quasi-one-dimensional compound K$_2$Cr$_3$As$_3$, which consists of double-walled tubes of [(Cr$_3$As$_3$)$^{2-}]^infty$ that run along the c axis, has attracted immediate attention as a potential syst
The dynamical properties of free and bound domain-wall excitations in Ising-chain materials have recently become the focus of intense research interest. New materials and spectrometers have made it possible to control the environment of coupled Ising
The quasi-one-dimensional spin ladder compounds, BaFe$_2$S$_3$ and BaFe$_2$Se$_3$, are investigated by infrared spectroscopy and density functional theory (DFT) calculations. We observe strong anisotropic electronic properties and an optical gap in t
The quasi-one-dimensional organic conductors (TMTTF)$_2X$ with non-centrosymmetric anions commonly undergo charge- and anion-order transitions upon cooling. While for compounds with tetrahedral anions ($X$ = BF$_4^-$, ReO$_4^-$, and ClO$_4^-$) the ch