ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Confidence Corridors for Mean Functions in Functional Data Analysis of Imaging Data

77   0   0.0 ( 0 )
 نشر من قبل Guannan Wang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent work involving the analysis of biomedical imaging data, we present a novel procedure for constructing simultaneous confidence corridors for the mean of imaging data. We propose to use flexible bivariate splines over triangulations to handle irregular domain of the images that is common in brain imaging studies and in other biomedical imaging applications. The proposed spline estimators of the mean functions are shown to be consistent and asymptotically normal under some regularity conditions. We also provide a computationally efficient estimator of the covariance function and derive its uniform consistency. The procedure is also extended to the two-sample case in which we focus on comparing the mean functions from two populations of imaging data. Through Monte Carlo simulation studies we examine the finite-sample performance of the proposed method. Finally, the proposed method is applied to analyze brain Positron Emission Tomography (PET) data in two different studies. One dataset used in preparation of this article was obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database.



قيم البحث

اقرأ أيضاً

We propose an alternative to $k$-nearest neighbors for functional data whereby the approximating neighboring curves are piecewise functions built from a functional sample. Using a locally defined distance function that satisfies stabilization criteri a, we establish pointwise and global approximation results in function spaces when the number of data curves is large enough. We exploit this feature to develop the asymptotic theory when a finite number of curves is observed at time-points given by an i.i.d. sample whose cardinality increases up to infinity. We use these results to investigate the problem of estimating unobserved segments of a partially observed functional data sample as well as to study the problem of functional classification and outlier detection. For such problems, our methods are competitive with and sometimes superior to benchmark predictions in the field.
The clustering for functional data with misaligned problems has drawn much attention in the last decade. Most methods do the clustering after those functional data being registered and there has been little research using both functional and scalar v ariables. In this paper, we propose a simultaneous registration and clustering (SRC) model via two-level models, allowing the use of both types of variables and also allowing simultaneous registration and clustering. For the data collected from subjects in different unknown groups, a Gaussian process functional regression model with time warping is used as the first level model; an allocation model depending on scalar variables is used as the second level model providing further information over the groups. The former carries out registration and modeling for the multi-dimensional functional data (2D or 3D curves) at the same time. This methodology is implemented using an EM algorithm, and is examined on both simulated data and real data.
Functional principal component analysis (FPCA) could become invalid when data involve non-Gaussian features. Therefore, we aim to develop a general FPCA method to adapt to such non-Gaussian cases. A Kenalls $tau$ function, which possesses identical e igenfunctions as covariance function, is constructed. The particular formulation of Kendalls $tau$ function makes it less insensitive to data distribution. We further apply it to the estimation of FPCA and study the corresponding asymptotic consistency. Moreover, the effectiveness of the proposed method is demonstrated through a comprehensive simulation study and an application to the physical activity data collected by a wearable accelerometer monitor.
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t o handle the functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions to obtain convenience in interpretation. We formulate the problem through a penalized Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An efficient algorithm is developed for the optimization of the penalized likelihood using majorization-minimization (MM) algorithm. The theoretical results indicate both consistency and sparsistency of the proposed method. We conduct a thorough numerical experiment to demonstrate the advantages of the SLFPCA approach. Our method is further applied to a physical activity dataset.
Functional principal component analysis is essential in functional data analysis, but the inferences will become unconvincing when some non-Gaussian characteristics occur, such as heavy tail and skewness. The focus of this paper is to develop a robus t functional principal component analysis methodology in dealing with non-Gaussian longitudinal data, for which sparsity and irregularity along with non-negligible measurement errors must be considered. We introduce a Kendalls $tau$ function whose particular properties make it a nice proxy for the covariance function in the eigenequation when handling non-Gaussian cases. Moreover, the estimation procedure is presented and the asymptotic theory is also established. We further demonstrate the superiority and robustness of our method through simulation studies and apply the method to the longitudinal CD4 cell count data in an AIDS study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا