A Dirac-Fermi liquid (DFL)--a doped system with Dirac spectrum--is an important example of a non-Galilean-invariant Fermi liquid (FL). Real-life realizations of a DFL include, e.g., doped graphene, surface states of three-dimensional (3D) topological insulators, and 3D Dirac/Weyl metals. We study the optical conductivity of a DFL arising from intraband electron-electron scattering. It is shown that the effective current relaxation rate behaves as $1/tau_{J}propto left(omega^2+4pi^2 T^2right)left(3omega^2+8pi^2 T^2right)$ for $max{omega, T}ll mu$, where $mu$ is the chemical potential, with an additional logarithmic factor in two dimensions. In graphene, the quartic form of $1/tau_{J}$ competes with a small FL-like term, $proptoomega^2+4pi^2 T^2$, due to trigonal warping of the Fermi surface. We also calculated the dynamical charge susceptibility, $chi_mathrm{c}({bf q},omega)$, outside the particle-hole continua and to one-loop order in the dynamically screened Coulomb interaction. For a 2D DFL, the imaginary part of $chi_mathrm{c}({bf q},omega)$ scales as $q^2omegaln|omega|$ and $q^4/omega^3$ for frequencies larger and smaller than the plasmon frequency at given $q$, respectively. The small-$q$ limit of $mathrm{Im} chi_mathrm{c}({bf q},omega)$ reproduces our result for the conductivity via the Einstein relation.