ﻻ يوجد ملخص باللغة العربية
A good open-domain chatbot should avoid presenting contradictory responses about facts or opinions in a conversational session, known as its consistency capacity. However, evaluating the consistency capacity of a chatbot is still challenging. Employing human judges to interact with chatbots on purpose to check their capacities is costly and low-efficient, and difficult to get rid of subjective bias. In this paper, we propose the Addressing Inquiries about History (AIH), an efficient and practical framework for the consistency evaluation. At the conversation stage, AIH attempts to address appropriate inquiries about the dialogue history to induce the chatbot to redeclare the historical facts or opinions. We carry out the conversation between chatbots, which is more efficient than the human-bot interaction and can also alleviate the subjective bias. In this way, we manage to rapidly obtain a dialog session that contains responses with high contradiction possibilities. At the contradiction recognition stage, we can either employ human judges or a natural language inference (NLI) model to recognize whether the answers to the inquiries are contradictory with history. Finally, we are able to rank chatbots according to the contradiction statistics. Experiments on open-domain chatbots show that our approach can efficiently and reliably assess the consistency capacity of chatbots and achieve a high ranking correlation with the human evaluation. We release the framework and hope to help improve the consistency capacity of chatbots. footnote{url{https://github.com/ictnlp/AIH}}
Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that oth
Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Ama
Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits t
In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the probl
With the recent advances of open-domain story generation, the lack of reliable automatic evaluation metrics becomes an increasingly imperative issue that hinders the fast development of story generation. According to conducted researches in this rega