ﻻ يوجد ملخص باللغة العربية
Pretrained multilingual models (PMMs) enable zero-shot learning via cross-lingual transfer, performing best for languages seen during pretraining. While methods exist to improve performance for unseen languages, they have almost exclusively been evaluated using amounts of raw text only available for a small fraction of the worlds languages. In this paper, we evaluate the performance of existing methods to adapt PMMs to new languages using a resource available for over 1600 languages: the New Testament. This is challenging for two reasons: (1) the small corpus size, and (2) the narrow domain. While performance drops for all approaches, we surprisingly still see gains of up to $17.69%$ accuracy for part-of-speech tagging and $6.29$ F1 for NER on average over all languages as compared to XLM-R. Another unexpected finding is that continued pretraining, the simplest approach, performs best. Finally, we perform a case study to disentangle the effects of domain and size and to shed light on the influence of the finetuning source language.
Reading and writing research papers is one of the most privileged abilities that a qualified researcher should master. However, it is difficult for new researchers (eg{students}) to fully {grasp} this ability. It would be fascinating if we could trai
Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as Paris is the capital of [MASK] are used as probes. We translate the establishe
Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, synt
Evaluating the quality of a dialogue system is an understudied problem. The recent evolution of evaluation method motivated this survey, in which an explicit and comprehensive analysis of the existing methods is sought. We are first to divide the eva
Multilingual automatic speech recognition (ASR) models have shown great promise in recent years because of the simplified model training and deployment process. Conventional methods either train a universal multilingual model without taking any langu