ﻻ يوجد ملخص باللغة العربية
Glitches are the observational manifestations of superfluidity inside neutron stars. The aim of this paper is to describe an automated glitch detection pipeline, which can alert the observers on possible real-time detection of rotational glitches in pulsars. Post alert, the pulsars can be monitored at a higher cadence to measure the post-glitch recovery phase. Two algorithms namely, Median Absolute Deviation (MAD) and polynomial regression have been explored to detect glitches in real time. The pipeline has been optimized with the help of simulated timing residuals for both the algorithms. Based on the simulations, we conclude that the polynomial regression algorithm is significantly more effective for real time glitch detection. The pipeline has been tested on a few published glitches. This pipeline is presently implemented at the Ooty Radio Telescope. In the era of upcoming large telescopes like SKA, several hundreds of pulsars will be observed regularly and such a tool will be useful for both real-time detection as well as optimal utilization of observation time for such glitching pulsars.
Fast Radio Bursts (FRBs) are bright enigmatic radio pulses of roughly millisecond duration that come from extragalactic distances. As part of the MeerTRAP project, we use the MeerKAT telescope array in South Africa to search for and localise those bu
Dedicated surveys using different detection pipelines are being carried out at multiple observatories to find more Fast Radio Bursts (FRBs). Understanding the efficiency of detection algorithms and the survey completeness function is important to ena
We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed-loop of baselines of an interferometer. The bispectrum is calibr
The Geostationary Lightning Mapper (GLM) instrument onboard the GOES 16 and 17 satellites has been shown to be capable of detecting bolides (bright meteors) in Earths atmosphere. Due to its large, continuous field of view and immediate public data av
A major challenge in modern radio astronomy is dealing with the massive data volumes generated by wide-bandwidth receivers. Such massive data rates are often too great for a single device to cope, and so processing must be split across multiple devic