ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly Accelerated EPI with Wave Encoding and Multi-shot Simultaneous Multi-Slice Imaging

202   0   0.0 ( 0 )
 نشر من قبل Jaejin Cho
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce wave encoded acquisition and reconstruction techniques for highly accelerated echo planar imaging (EPI) with reduced g-factor penalty and image artifacts. Wave-EPI involves playing sinusoidal gradients during the EPI readout while employing interslice shifts as in blipped-CAIPI acquisitions. This spreads the aliasing in all spatial directions, thereby taking better advantage of 3D coil sensitivity profiles. The amount of voxel spreading that can be achieved by the wave gradients during the short EPI readout period is constrained by the slew rate of the gradient coils and peripheral nerve stimulation (PNS) monitor. We propose to use a half-cycle sinusoidal gradient to increase the amount of voxel spreading that can be achieved while respecting the slew and stimulation constraints. Extending wave-EPI to multi-shot acquisition minimizes geometric distortion and voxel blurring at high in-plane resolution, while structured low-rank regularization mitigates shot-to-shot phase variations without additional navigators. We propose to use different point spread functions (PSFs) for the k-space lines with positive and negative polarities, which are calibrated with a FLEET-based reference scan and allow for addressing gradient imperfections. Wave-EPI provided whole-brain single-shot gradient echo (GE) and multi-shot spin echo (SE) EPI acquisitions at high acceleration factors and was combined with g-Slider slab encoding to boost the SNR level in 1mm isotropic diffusion imaging. Relative to blipped-CAIPI, wave-EPI reduced average and maximum g-factors by up to 1.21- and 1.37-fold, respectively. In conclusion, wave-EPI allows highly accelerated single- and multi-shot EPI with reduced g-factor and artifacts and may facilitate clinical and neuroscientific applications of EPI by improving the spatial and temporal resolution in functional and diffusion imaging.



قيم البحث

اقرأ أيضاً

Multi-shot echo planar imaging (msEPI) is a promising approach to achieve high in-plane resolution with high sampling efficiency and low T2* blurring. However, due to the geometric distortion, shot-to-shot phase variations and potential subject motio n, msEPI continues to be a challenge in MRI. In this work, we introduce acquisition and reconstruction strategies for robust, high-quality msEPI without phase navigators. We propose Blip Up-Down Acquisition (BUDA) using interleaved blip-up and -down phase encoding, and incorporate B0 forward-modeling into Hankel structured low-rank model to enable distortion- and navigator-free msEPI. We improve the acquisition efficiency and reconstruction quality by incorporating simultaneous multi-slice acquisition and virtual-coil reconstruction into the BUDA technique. We further combine BUDA with the novel RF-encoded gSlider acquisition, dubbed BUDA-gSlider, to achieve rapid high isotropic-resolution MRI. Deploying BUDA-gSlider with model-based reconstruction allows for distortion-free whole-brain 1mm isotropic T2 mapping in about 1 minute. It also provides whole-brain 1mm isotropic diffusion imaging with high geometric fidelity and SNR efficiency. We finally incorporate sinusoidal wave gradients during the EPI readout to better use coil sensitivity encoding with controlled aliasing.
Accelerating multi-modal magnetic resonance (MR) imaging is a new and effective solution for fast MR imaging, providing superior performance in restoring the target modality from its undersampled counterpart with guidance from an auxiliary modality. However, existing works simply introduce the auxiliary modality as prior information, lacking in-depth investigations on the potential mechanisms for fusing two modalities. Further, they usually rely on the convolutional neural networks (CNNs), which focus on local information and prevent them from fully capturing the long-distance dependencies of global knowledge. To this end, we propose a multi-modal transformer (MTrans), which is capable of transferring multi-scale features from the target modality to the auxiliary modality, for accelerated MR imaging. By restructuring the transformer architecture, our MTrans gains a powerful ability to capture deep multi-modal information. More specifically, the target modality and the auxiliary modality are first split into two branches and then fused using a multi-modal transformer module. This module is based on an improved multi-head attention mechanism, named the cross attention module, which absorbs features from the auxiliary modality that contribute to the target modality. Our framework provides two appealing benefits: (i) MTrans is the first attempt at using improved transformers for multi-modal MR imaging, affording more global information compared with CNN-based methods. (ii) A new cross attention module is proposed to exploit the useful information in each branch at different scales. It affords both distinct structural information and subtle pixel-level information, which supplement the target modality effectively.
Functional MRI (fMRI) is commonly used for interpreting neural activities across the brain. Numerous accelerated fMRI techniques aim to provide improved spatiotemporal resolutions. Among these, simultaneous multi-slice (SMS) imaging has emerged as a powerful strategy, becoming a part of large-scale studies, such as the Human Connectome Project. However, when SMS imaging is combined with in-plane acceleration for higher acceleration rates, conventional SMS reconstruction methods may suffer from noise amplification and other artifacts. Recently, deep learning (DL) techniques have gained interest for improving MRI reconstruction. However, these methods are typically trained in a supervised manner that necessitates fully-sampled reference data, which is not feasible in highly-accelerated fMRI acquisitions. Self-supervised learning that does not require fully-sampled data has recently been proposed and has shown similar performance to supervised learning. However, it has only been applied for in-plane acceleration. Furthermore the effect of DL reconstruction on subsequent fMRI analysis remains unclear. In this work, we extend self-supervised DL reconstruction to SMS imaging. Our results on prospectively 10-fold accelerated 7T fMRI data show that self-supervised DL reduces reconstruction noise and suppresses residual artifacts. Subsequent fMRI analysis remains unaltered by DL processing, while the improved temporal signal-to-noise ratio produces higher coherence estimates between task runs.
Compressed sensing takes advantage of low-dimensional signal structure to reduce sampling requirements far below the Nyquist rate. In magnetic resonance imaging (MRI), this often takes the form of sparsity through wavelet transform, finite difference s, and low rank extensions. Though powerful, these image priors are phenomenological in nature and do not account for the mechanism behind the image formation. On the other hand, MRI signal dynamics are governed by physical laws, which can be explicitly modeled and used as priors for reconstruction. {1}These explicit and implicit signal priors can be synergistically combined in an inverse problem framework to recover sharp, multi-contrast images from highly accelerated scans. Furthermore, the physics-based constraints provide a recipe for recovering quantitative, bio-physical parameters from the data. This article introduces physics-based modeling constraints in MRI and shows how they can be used in conjunction with compressed sensing for image reconstruction and quantitative imaging. We describe model-based quantitative MRI, as well as its linear subspace approximation. We also discuss approaches to selecting user-controllable scan parameters given knowledge of the physical model. We present several MRI applications that take advantage of this framework for the purpose of multi-contrast imaging and quantitative mapping.
Spin-echo functional MRI (SE-fMRI) has the potential to improve spatial specificity when compared to gradient-echo fMRI. However, high spatiotemporal resolution SE-fMRI with large slice-coverage is challenging as SE-fMRI requires a long echo time (TE ) to generate blood oxygenation level-dependent (BOLD) contrast, leading to long repetition times (TR). The aim of this work is to develop an acquisition method that enhances the slice-coverage of SE-fMRI at high spatiotemporal resolution. An acquisition scheme was developed entitled Multisection Excitation by Simultaneous Spin-echo Interleaving (MESSI) with complex-encoded generalized SLIce Dithered Enhanced Resolution (cgSlider). MESSI utilizes the dead-time during the long TE by interleaving the excitation and readout of two slices to enable 2x slice-acceleration, while cgSlider utilizes the stable temporal background phase in SE-fMRI to encode and decode two adjacent slices simultaneously with a phase-constrained reconstruction method. The proposed cgSlider-MESSI was also combined with Simultaneous Multi-Slice (SMS) to achieve further slice-acceleration. This combined approach was used to achieve 1.5mm isotropic whole-brain SE-fMRI with a temporal resolution of 1.5s and was evaluated using sensory stimulation and breath-hold tasks at 3T. Compared to conventional SE-SMS, cgSlider-MESSI-SMS provides four-fold increase in slice-coverage for the same TR, with comparable temporal signal-to-noise ratio. Corresponding fMRI activation from cgSlider-MESSI-SMS for both fMRI tasks were consistent with those from conventional SE-SMS. Overall, cgSlider-MESSI-SMS achieved a 32x encoding-acceleration by combining RinplanexMBxcgSliderxMESSI=4x2x2x2. High-quality, high-resolution whole-brain SE-fMRI was acquired at a short TR using cgSlider-MESSI-SMS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا