ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence

152   0   0.0 ( 0 )
 نشر من قبل Xue Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing rotated object detectors are mostly inherited from the horizontal detection paradigm, as the latter has evolved into a well-developed area. However, these detectors are difficult to perform prominently in high-precision detection due to the limitation of current regression loss design, especially for objects with large aspect ratios. Taking the perspective that horizontal detection is a special case for rotated object detection, in this paper, we are motivated to change the design of rotation regression loss from induction paradigm to deduction methodology, in terms of the relation between rotation and horizontal detection. We show that one essential challenge is how to modulate the coupled parameters in the rotation regression loss, as such the estimated parameters can influence to each other during the dynamic joint optimization, in an adaptive and synergetic way. Specifically, we first convert the rotated bounding box into a 2-D Gaussian distribution, and then calculate the Kullback-Leibler Divergence (KLD) between the Gaussian distributions as the regression loss. By analyzing the gradient of each parameter, we show that KLD (and its derivatives) can dynamically adjust the parameter gradients according to the characteristics of the object. It will adjust the importance (gradient weight) of the angle parameter according to the aspect ratio. This mechanism can be vital for high-precision detection as a slight angle error would cause a serious accuracy drop for large aspect ratios objects. More importantly, we have proved that KLD is scale invariant. We further show that the KLD loss can be degenerated into the popular $l_{n}$-norm loss for horizontal detection. Experimental results on seven datasets using different detectors show its consistent superiority, and codes are available at https://github.com/yangxue0827/RotationDetection.



قيم البحث

اقرأ أيضاً

Weakly-supervised object detection (WSOD) has emerged as an inspiring recent topic to avoid expensive instance-level object annotations. However, the bounding boxes of most existing WSOD methods are mainly determined by precomputed proposals, thereby being limited in precise object localization. In this paper, we defend the problem setting for improving localization performance by leveraging the bounding box regression knowledge from a well-annotated auxiliary dataset. First, we use the well-annotated auxiliary dataset to explore a series of learnable bounding box adjusters (LBBAs) in a multi-stage training manner, which is class-agnostic. Then, only LBBAs and a weakly-annotated dataset with non-overlapped classes are used for training LBBA-boosted WSOD. As such, our LBBAs are practically more convenient and economical to implement while avoiding the leakage of the auxiliary well-annotated dataset. In particular, we formulate learning bounding box adjusters as a bi-level optimization problem and suggest an EM-like multi-stage training algorithm. Then, a multi-stage scheme is further presented for LBBA-boosted WSOD. Additionally, a masking strategy is adopted to improve proposal classification. Experimental results verify the effectiveness of our method. Our method performs favorably against state-of-the-art WSOD methods and knowledge transfer model with similar problem setting. Code is publicly available at url{https://github.com/DongSky/lbba_boosted_wsod}.
We introduce hardness in relative entropy, a new notion of hardness for search problems which on the one hand is satisfied by all one-way functions and on the other hand implies both next-block pseudoentropy and inaccessible entropy, two forms of com putational entropy used in recent constructions of pseudorandom generators and statistically hiding commitment schemes, respectively. Thus, hardness in relative entropy unifies the latter two notions of computational entropy and sheds light on the apparent duality between them. Additionally, it yields a more modular and illuminating proof that one-way functions imply next-block inaccessible entropy, similar in structure to the proof that one-way functions imply next-block pseudoentropy (Vadhan and Zheng, STOC 12).
Renyi divergence is related to Renyi entropy much like Kullback-Leibler divergence is related to Shannons entropy, and comes up in many settings. It was introduced by Renyi as a measure of information that satisfies almost the same axioms as Kullback -Leibler divergence, and depends on a parameter that is called its order. In particular, the Renyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of Renyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of $sigma$-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.
We propose a method to fuse posterior distributions learned from heterogeneous datasets. Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors and proceeds using a simple assign-and-average app roach. The components of the dataset posteriors are assigned to the proposed global model components by solving a regularized variant of the assignment problem. The global components are then updated based on these assignments by their mean under a KL divergence. For exponential family variational distributions, our formulation leads to an efficient non-parametric algorithm for computing the fused model. Our algorithm is easy to describe and implement, efficient, and competitive with state-of-the-art on motion capture analysis, topic modeling, and federated learning of Bayesian neural networks.
Kullback-Leibler (KL) divergence is one of the most important divergence measures between probability distributions. In this paper, we investigate the properties of KL divergence between Gaussians. Firstly, for any two $n$-dimensional Gaussians $math cal{N}_1$ and $mathcal{N}_2$, we find the supremum of $KL(mathcal{N}_1||mathcal{N}_2)$ when $KL(mathcal{N}_2||mathcal{N}_1)leq epsilon$ for $epsilon>0$. This reveals the approximate symmetry of small KL divergence between Gaussians. We also find the infimum of $KL(mathcal{N}_1||mathcal{N}_2)$ when $KL(mathcal{N}_2||mathcal{N}_1)geq M$ for $M>0$. Secondly, for any three $n$-dimensional Gaussians $mathcal{N}_1, mathcal{N}_2$ and $mathcal{N}_3$, we find a bound of $KL(mathcal{N}_1||mathcal{N}_3)$ if $KL(mathcal{N}_1||mathcal{N}_2)$ and $KL(mathcal{N}_2||mathcal{N}_3)$ are bounded. This reveals that the KL divergence between Gaussians follows a relaxed triangle inequality. Importantly, all the bounds in the theorems presented in this paper are independent of the dimension $n$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا