ﻻ يوجد ملخص باللغة العربية
Classical black holes shield us from the singularities that inevitably appear in general relativity. Being singularity regularization one of the main landmarks for a successful theory of quantum gravity, quantum black holes are not obliged to hide their inner core from the outside world. Notwithstanding the aforesaid, it is often implicitly assumed that quantum gravity effects must remain confined to black hole interiors. In this essay we argue in the opposite direction, discussing theoretical evidence for the existence of strong correlations between the physics inside and outside non-singular black holes. We conclude that astronomical tests of the surroundings of black holes can provide invaluable information about their so-far unexplored interiors.
The singularity of a spherical (Schwarzschild) black hole is a surface, not a point. A freely-falling, non-rotating observer sees Hawking radiation with energy density diverging with radius as $rho propto r^{-6}$ near the Schwarzschild singular surfa
We numerically compute the renormalized expectation value $langlehat{Phi}^{2}rangle_{ren}$ of a minimally-coupled massless quantum scalar field in the interior of a four-dimensional Reissner-Nordstrom black hole, in both the Hartle-Hawking and Unruh
In this paper, we demonstrate that a phenomenon described as topological inflation during which inflation occurs inside the core of topological defects, has a non-topological counterpart. This appears in a simple set-up containing Einstein gravity co
We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the popu
Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band t