ﻻ يوجد ملخص باللغة العربية
The ongoing shift of cloud services from monolithic designs to microservices creates high demand for efficient and high performance datacenter networking stacks, optimized for fine-grained workloads. Commodity networking systems based on software stacks and peripheral NICs introduce high overheads when it comes to delivering small messages. We present Dagger, a hardware acceleration fabric for cloud RPCs based on FPGAs, where the accelerator is closely-coupled with the host processor over a configurable memory interconnect. The three key design principle of Dagger are: (1) offloading the entire RPC stack to an FPGA-based NIC, (2) leveraging memory interconnects instead of PCIe buses as the interface with the host CPU, and (3) making the acceleration fabric reconfigurable, so it can accommodate the diverse needs of microservices. We show that the combination of these principles significantly improves the efficiency and performance of cloud RPC systems while preserving their generality. Dagger achieves 1.3-3.8x higher per-core RPC throughput compared to both highly-optimized software stacks, and systems using specialized RDMA adapters. It also scales up to 84 Mrps with 8 threads on 4 CPU cores, while maintaining state-of-the-art us-scale tail latency. We also demonstrate that large third-party applications, like memcached and MICA KVS, can be easily ported on Dagger with minimal changes to their codebase, bringing their median and tail KVS access latency down to 2.8 - 3.5us and 5.4 - 7.8us, respectively. Finally, we show that Dagger is beneficial for multi-tier end-to-end microservices with different threading models by evaluating it using an 8-tier application implementing a flight check-in service.
Cloud applications are increasingly relying on hundreds of loosely-coupled microservices to complete user requests that meet an applications end-to-end QoS requirements. Communication time between services accounts for a large fraction of the end-to-
Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumptio
Basic Linear Algebra Subprograms (BLAS) play key role in high performance and scientific computing applications. Experimentally, yesteryear multicore and General Purpose Graphics Processing Units (GPGPUs) are capable of achieving up to 15 to 57% of t
We consider an extension to the geometric amoebot model that allows amoebots to form so-called emph{circuits}. Given a connected amoebot structure, a circuit is a subgraph formed by the amoebots that permits the instant transmission of signals. We sh
We develop and commercialize autonomous machines, such as logistic robots and self-driving cars, around the globe. A critical challenge to our -- and any -- autonomous machine is accurate and efficient localization under resource constraints, which h