ﻻ يوجد ملخص باللغة العربية
Strong gravitational lensing, which can make a background source galaxy appears multiple times due to its light rays being deflected by the mass of one or more foreground lens galaxies, provides astronomers with a powerful tool to study dark matter, cosmology and the most distant Universe. PyAutoLens is an open-source Python 3.6+ package for strong gravitational lensing, with core features including fully automated strong lens modeling of galaxies and galaxy clusters, support for direct imaging and interferometer datasets and comprehensive tools for simulating samples of strong lenses. The API allows users to perform ray-tracing by using analytic light and mass profiles to build strong lens systems. Accompanying PyAutoLens is the autolens workspace (see https://github.com/Jammy2211/autolens_workspace), which includes example scripts, lens datasets and the HowToLens lectures in Jupyter notebook format which introduce non experts to strong lensing using PyAutoLens. Readers can try PyAutoLens right now by going to the introduction Jupyter notebook on Binder (see https://mybinder.org/v2/gh/Jammy2211/autolens_workspace/master) or checkout the readthedocs (see https://pyautolens.readthedocs.io/en/latest/) for a complete overview of PyAutoLenss features.
Cosmological numerical simulations of galaxy formation have led to the cuspy density profile of a pure cold dark matter halo toward the center, which is in sharp contradiction with the observations of the rotation curves of cold dark matter-dominated
The difficult task of observing Dark Matter subhaloes is of paramount importance since it would constrain Dark Matter particle properties (cold or warm relic) and confirm once again the longstanding $Lambda$CDM model. In the near future the new gener
Strong-lensing images provide a wealth of information both about the magnified source and about the dark matter distribution in the lens. Precision analyses of these images can be used to constrain the nature of dark matter. However, this requires hi
Automated searches for strong gravitational lensing in optical imaging survey datasets often employ machine learning and deep learning approaches. These techniques require more example systems to train the algorithms than have presently been discover
The imminent advent of very large-scale optical sky surveys, such as Euclid and LSST, makes it important to find efficient ways of discovering rare objects such as strong gravitational lens systems, where a background object is multiply gravitational