ﻻ يوجد ملخص باللغة العربية
Electron-phonon interaction and related self-energy are fundamental to both the equilibrium properties and non-equilibrium relaxation dynamics of solids. Although electron-phonon interaction has been suggested by various time-resolved measurements to be important for the relaxation dynamics of graphene, the lack of energy- and momentum-resolved self-energy dynamics prohibits direct identification of the role of specific phonon modes in the relaxation dynamics. Here by performing time- and angle-resolved photoemission spectroscopy measurements on a Kekule-ordered graphene with folded Dirac cones at the $Gamma$ point, we have succeeded in resolving the self-energy effect induced by coupling of electrons to two phonons at $Omega_1$ = 177 meV and $Omega_2$ = 54 meV and revealing its dynamical change in the time domain. Moreover, these strongly coupled phonons define energy thresholds, which separate the hierarchical relaxation dynamics from ultrafast, fast to slow, thereby providing direct experimental evidence for the dominant role of mode-specific phonons in the relaxation dynamics
While graphene shows a characteristic conical dispersion with a vanishing density of states (DOS) near the Fermi energy E$_F$, it has been suggested that under extremely-high doping ($sim$ 1/4), the extended flat band can be shifted to near E$_F$, re
The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at valleys K and K. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass generation in particle physics. Here we
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the
A Kekule bond texture in graphene modifies the electronic band structure by folding the Brillouin zone and bringing the two inequivalent Dirac points to the center. This can result, in the opening of a gap (Kek-O) or the locking of the valley degree
We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigat