ﻻ يوجد ملخص باللغة العربية
Nash equilibrium is a central concept in game theory. Several Nash solvers exist, yet none scale to normal-form games with many actions and many players, especially those with payoff tensors too big to be stored in memory. In this work, we propose an approach that iteratively improves an approximation to a Nash equilibrium through joint play. It accomplishes this by tracing a previously established homotopy which connects instances of the game defined with decaying levels of entropy regularization. To encourage iterates to remain near this path, we efficiently minimize emph{average deviation incentive} via stochastic gradient descent, intelligently sampling entries in the payoff tensor as needed. This process can also be viewed as constructing and reacting to a polymatrix approximation to the game. In these ways, our proposed approach, emph{average deviation incentive descent with adaptive sampling} (ADIDAS), is most similar to three classical approaches, namely homotopy-type, Lyapunov, and iterative polymatrix solvers. We demonstrate through experiments the ability of this approach to approximate a Nash equilibrium in normal-form games with as many as seven players and twenty one actions (over one trillion outcomes) that are orders of magnitude larger than those possible with prior algorithms.
Zero-sum games have long guided artificial intelligence research, since they possess both a rich strategy space of best-responses and a clear evaluation metric. Whats more, competition is a vital mechanism in many real-world multi-agent systems capab
We prove that computing a Nash equilibrium of a two-player ($n times n$) game with payoffs in $[-1,1]$ is PPAD-hard (under randomized reductions) even in the smoothed analysis setting, smoothing with noise of constant magnitude. This gives a strong n
We investigate the problem of equilibrium computation for large $n$-player games. Large games have a Lipschitz-type property that no single players utility is greatly affected by any other individual players actions. In this paper, we mostly focus on
We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an
We consider a general-sum N-player linear-quadratic game with stochastic dynamics over a finite horizon and prove the global convergence of the natural policy gradient method to the Nash equilibrium. In order to prove the convergence of the method, w