ﻻ يوجد ملخص باللغة العربية
Clift and Murfet (2019) introduced a naive Bayesian smooth relaxation of Turing machines motivated by work in differential linear logic; this was subsequently used to endow spaces of program codes of bounded length with a smooth manifold structure via the staged-pseudo universal Turing machine introduced by Clift, Murfet and Wallbridge (2021). In this paper, we give a general construction for simulating n-tape Turing machines on a single tape Turing machine such that the (naive Bayesian) uncertainty is propagated in an equivalent manner. This result suggests a stronger kind of equivalence between single tape and n-tape Turing machines than that established by classical results, however, the clarification of these implications is open to future work. We then construct a pseudo universal Turing machine which similarly preserves the propagation of uncertainty in its simulations, and observe that this gives rise to a particularly natural smooth relaxation of the space of programs.
This note introduces a generalization to the setting of infinite-time computation of the busy beaver problem from classical computability theory, and proves some results concerning the growth rate of an associated function. In our view, these results
The Posner-Robinson Theorem states that for any reals $Z$ and $A$ such that $Z oplus 0 leq_mathrm{T} A$ and $0 <_mathrm{T} Z$, there exists $B$ such that $A equiv_mathrm{T} B equiv_mathrm{T} B oplus Z equiv_mathrm{T} B oplus 0$. Consequently, any non
We describe the Turing Machine, list some of its many influences on the theory of computation and complexity of computations, and illustrate its importance.
An {omega}-language is a set of infinite words over a finite alphabet X. We consider the class of recursive {omega}-languages, i.e. the class of {omega}-languages accepted by Turing machines with a Buchi acceptance condition, which is also the class
The model of local Turing machines is introduced, including classical and quantum ones, in the framework of matrix-product states. The locality refers to the fact that at any instance of the computation the heads of a Turing machine have definite loc