ﻻ يوجد ملخص باللغة العربية
Recent years have seen an increased interest in using mean-field density based modelling and control strategy for deploying robotic swarms. In this paper, we study how to dynamically deploy the robots subject to their physical constraints to efficiently measure and reconstruct certain unknown spatial field (e.g. the air pollution index over a city). Specifically, the evolution of the robots density is modelled by mean-field partial differential equations (PDEs) which are uniquely determined by the robots individual dynamics. Bayesian regression models are used to obtain predictions and return a variance function that represents the confidence of the prediction. We formulate a PDE constrained optimization problem based on this variance function to dynamically generate a reference density signal which guides the robots to uncertain areas to collect new data, and design mean-field feedback-based control laws such that the robots density converges to this reference signal. We also show that the proposed feedback law is robust to density estimation errors in the sense of input-to-state stability. Simulations are included to verify the effectiveness of the algorithms.
With the rapid development of AI and robotics, transporting a large swarm of networked robots has foreseeable applications in the near future. Existing research in swarm robotics has mainly followed a bottom-up philosophy with predefined local coordi
Swarm robotic systems have foreseeable applications in the near future. Recently, there has been an increasing amount of literature that employs mean-field partial differential equations (PDEs) to model the time-evolution of the probability density o
This work studies how to estimate the mean-field density of large-scale systems in a distributed manner. Such problems are motivated by the recent swarm control technique that uses mean-field approximations to represent the collective effect of the s
Today many mobile users in various zones are invited to sense and send back real-time useful information (e.g., traffic observation and sensor data) to keep the freshness of the content updates in such zones. However, due to the sampling cost in sens
In this paper, we consider discrete-time partially observed mean-field games with the risk-sensitive optimality criterion. We introduce risk-sensitivity behaviour for each agent via an exponential utility function. In the game model, each agent is we