ﻻ يوجد ملخص باللغة العربية
In this theoretical work, the DSP-perceived channel in optical coherent communications is first simplified, based on which we categorize linear MIMO equalizers into four classes according to their reference locations. The entire channel inverse can be represented by a complex conjugate-dependent system, coinciding with the widely linear equalization theory. Suboptimally removing FO dynamics, relatively static channel inverses parameterized with common device and channel parameters are presented for monitoring or calibration purposes.
Orthogonal time frequency space (OTFS) modulation can effectively convert a doubly dispersive channel into an almost non-fading channel in the delay-Doppler domain. However, one critical issue for OTFS is the very high complexity of equalizers. In th
We analyse the behaviour of a massive multi-user MIMO (MU-MIMO) system comprising a base station (BS) equipped with one of five different antenna topologies for which the spatial aperture is either unconstrained, or space-constrained. We derive the n
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studie
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communica