ﻻ يوجد ملخص باللغة العربية
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices. The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing and robust cyclicity of its optical transitions towards spin-photon entanglement schemes. Here, we demonstrate multi-axis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive between the ground and excited states. We use coherent population trapping and optically driven electronic spin resonance to confirm coherent access to the qubit at 1.7 K, and obtain spin Rabi oscillations at a rate of $Omega/2pi$=3.6(1) MHz. All-optical Ramsey interferometry reveals a spin dephasing time of $T_2^*$=1.3(3)$mu$s and two-pulse dynamical decoupling already extends the spin coherence time to $T_2$=0.33(14) ms. Combined with transform-limited photons and integration into photonic nanostructures, our results make the SnV a competitive spin-photon building block for quantum networks.
Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. T
The recently discovered negatively charged tin-vacancy centre in diamond is a promising candidate for applications in quantum information processing (QIP). We here present a detailed spectroscopic study encompassing single photon emission and polaris
Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories.
Group-IV color centers in diamond have attracted significant attention as solid-state spin qubits because of their excellent optical and spin properties. Among these color centers, the tin-vacancy (SnV$^{,textrm{-}}$) center is of particular interest
We utilize nonlinear absorption to design all-optical protocols that improve both charge state initialization and spin readout for the nitrogen-vacancy (NV) center in diamond. Non-monotonic variations in the equilibrium charge state as a function of