ﻻ يوجد ملخص باللغة العربية
In 2020, Cameron et al. introduced the restricted numerical range of a digraph (directed graph) as a tool for characterizing digraphs and studying their algebraic connectivity. In particular, digraphs with a restricted numerical range of a single point, a horizontal line segment, and a vertical line segment were characterized as $k$-imploding stars, directed joins of bidirectional digraphs, and regular tournaments, respectively. In this article, we extend these results by investigating digraphs whose restricted numerical range is a convex polygon in the complex plane. We provide computational methods for identifying these polygonal digraphs and show that these digraphs can be broken into three disjoint classes: normal, restricted-normal, and pseudo-normal digraphs, all of which are closed under the digraph complement. We prove sufficient conditions for normal digraphs and show that the directed join of two normal digraphs results in a restricted-normal digraph. Also, we prove that directed joins are the only restricted-normal digraphs when the order is square-free or twice a square-free number. Finally, we provide methods to construct restricted-normal digraphs that are not directed joins for all orders that are neither square-free nor twice a square-free number.
Let g be a strategy-proof rule on the domain NP of profiles where no alternative Pareto-dominates any other and let g have range S on NP. We complete the proof of a Gibbard-Satterthwaite result - if S contains more than two elements, then g is dictat
We discuss transpose (sometimes called universal exchange or all-to-all) on vertex symmetric networks. We provide a method to compare the efficiency of transpose schemes on two different networks with a cost function based on the number processors an
We prove a conjecture of Fox, Huang, and Lee that characterizes directed graphs that have constant density in all tournaments: they are disjoint unions of trees that are each constructed in a certain recursive way.
The cutoff phenomenon was recently confirmed for random walks on Ramanujan graphs by the first author and Peres. In this work, we obtain analogs in higher dimensions, for random walk operators on any Ramanujan complex associated with a simple group $
Let $D=(V,A)$ be a digraphs without isolated vertices. A vertex-degree based invariant $I(D)$ related to a real function $varphi$ of $D$ is defined as a summation over all arcs, $I(D) = frac{1}{2}sum_{uvin A}{varphi(d_u^+,d_v^-)}$, where $d_u^+$ (res