ترغب بنشر مسار تعليمي؟ اضغط هنا

Establishing the evolutionary timescales of the massive star formation process through chemistry

255   0   0.0 ( 0 )
 نشر من قبل Giovanni Sabatini Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) Understanding the details of the formation process of massive (i.e. M<8-10M$_odot$) stars is a long-standing problem in astrophysics. [...] We present a method to derive accurate timescales of the different evolutionary phases of the high-mass star formation process. We model a representative number of massive clumps of the ATLASGAL-TOP100 sample which cover all the evolutionary stages. The models describe an isothermal collapse and the subsequent warm-up phase, for which we follow their chemical evolution. The timescale of each phase is derived by comparing the results of the models with the properties of the sources of the ATLASGAL-TOP100 sample, taking into account the mass and luminosity of the clumps, and the column densities of methyl acetylene (CH$_3$CCH), acetonitrile (CH$_3$CN), formaldehyde (H$_2$CO) and methanol (CH$_3$OH). We find that the chosen molecular tracers are affected by the thermal evolution of the clumps, showing steep ice evaporation gradients from 10$^3$ to 10$^5$ AU during the warm-up phase. We succeed in reproducing the observed column densities of CH$_3$CCH and CH$_3$CN, while H$_2$CO and CH$_3$OH show a poorer agreement with the observed values. The total (massive) star formation time is found to be $sim5.2times10^5$ yr, which is defined by the timescales of the individual evolutionary phases of the ATLASGAL-TOP100 sample: $sim5times10^4$ yr for 70-$mu$m weak, $sim1.2times10^5$ yr for mid-IR weak, $sim2.4times10^5$ yr for mid-IR bright and $sim1.1times10^5$ yr for HII-regions phases. Our models, with an appropriate selection of molecular tracers that can act as chemical clocks, allow to get robust estimates of the duration of the individual phases of the high-mass star formation process, with the advantage of being capable to include additional tracers aimed at increasing the accuracy of the estimated timescales.



قيم البحث

اقرأ أيضاً

212 - Yichen Zhang 2013
We present radiation transfer (RT) simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high surface densities. The protostellar evolution is calculated with a detailed multi-zone model, with the accretion rate regulated by feedback from an evolving disk-wind outflow cavity. Disk and envelope evolutions are calculated self-consistently. In this framework, an evolutionary track is determined by three environmental initial conditions: the initial core mass M_c, the mean surface density of the ambient star-forming clump Sigma_cl, and the rotational-to-gravitational energy ratio of the initial core, beta_c. Evolutionary sequences with various M_c, Sigma_cl, beta_c are constructed. We find that in a fiducial model with M_c=60Msun, Sigma_cl=1 g/cm^2 and beta_c=0.02, the final star formation efficiency >~0.43. For each evolutionary track, RT simulations are performed at selected stages, with temperature profiles, SEDs, and images produced. At a given stage the envelope temperature is highly dependent on Sigma_cl, but only weakly dependent on M_c. The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually wides as the protostar grows. The fluxes at <~100 microns increase dramatically, and the far-IR peaks move to shorter wavelengths. We find that, despite scatter caused by different M_c, Sigma_cl, beta, and inclinations, sources at a given evolutionary stage appear in similar regions on color-color diagrams, especially when using colors at >~ 70 microns, where the scatter due to the inclination is minimized, implying that such diagrams can be useful diagnostic tools of evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution.
Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models provide a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular c louds. The conversion from gas to stars being incomplete, the left over gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with mbox{N-body simulations, to reveal} evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.
An ever growing number of observational and theoretical evidence suggests that the deuterated fraction (column density ratio between a species containing D and its hydrogenated counterpart, Dfrac) is an evolutionary indicator both in the low- and the high-mass star formation process. However, the role of surface chemistry in these studies has not been quantified from an observational point of view. In order to compare how the deuterated fractions of species formed only in the gas and partially or uniquely on grain surfaces evolve with time, we observed rotational transitions of CH3OH, 13CH3OH, CH2DOH, CH3OD at 3 and 1.3~mm, and of NH2D at 3~mm with the IRAM-30m telescope, and the inversion transitions (1,1) and (2,2) of NH3 with the GBT, towards most of the cores already observed by Fontani et al.~(2011, 2014) in N2H+, N2D+, HNC, DNC. NH2D is detected in all but two cores, regardless of the evolutionary stage. Dfrac(NH3) is on average above 0.1, and does not change significantly from the earliest to the most evolved phases, although the highest average value is found in the protostellar phase (~0.3). Few lines of CH2DOH and CH3OD are clearly detected, and only towards protostellar cores or externally heated starless cores. This work clearly confirms an expected different evolutionary trend of the species formed exclusively in the gas (N2D+ and N2H+) and those formed partially (NH2D and NH3) or totally (CH2DOH and CH3OH) on grain mantles. The study also reinforces the idea that Dfrac(N2H+) is the best tracer of massive starless cores, while high values of Dfrac(CH3OH) seem rather good tracers of the early protostellar phases, at which the evaporation/sputtering of the grain mantles is most efficient.
Imaging the bright maser emission produced by several molecular species at centimeter wavelengths is an essential tool for understanding the process of massive star formation because it provides a way to probe the kinematics of dense molecular gas at high angular resolution. Unimpeded by the high dust optical depths that affect shorter wavelength observations, the high brightness temperature of these emission lines offers a way to resolve accretion and outflow motions down to scales as fine as $sim$1-10 au in deeply embedded Galactic star-forming regions, and at sub-pc scales in nearby galaxies. The Next Generation Very Large Array will provide the capabilities needed to fully exploit these powerful tracers.
We analyzed both HCN J=1-0 and HNC J=1-0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar object (HMPOs), and 54 ultra-compact HII regions (UCHIIs). The inflow asymmetry in HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in blue profile. In the case of HNC spectra, the prevalence of blue sources does not appear, excepting for IRDCs. We suggest that this line is not appropriate to trace inflow motion in evolved stages of massive star formation because the abundance of HNC decreases at high temperatures. This result spotlights the importance of considering chemistry in the dynamics study of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also found that the absorption dips of the HNC spectra in 6 out of 7 blue sources are red-shifted relative to their systemic velocities. These red-shifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا