ترغب بنشر مسار تعليمي؟ اضغط هنا

Taking a Long Look: A Two-Decade Reverberation Mapping Study of High-Luminosity Quasars

74   0   0.0 ( 0 )
 نشر من قبل Shai Kaspi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reverberation mapping (RM) of active galactic nuclei (AGNs) has been used over the past three decades to determine AGN broad-line region (BLR) sizes and central black-hole masses, and their relations with the AGNs luminosity. Until recently the sample of objects with RM data was limited to low-luminosity AGNs ($L_{rm opt} lesssim 10^{46}$ ergs s$^{-1}$) and low redshifts ($z lesssim 0.5$). Here we present results from a reverberation-mapping project of some of the most luminous and highest redshift quasars that have been mapped to date. The study is based on almost twenty years of photometric monitoring of 11 quasars, six of which were monitored spectrophotometrically for 13 years. This is the longest reverberation-mapping project carried out so far on this type of AGNs. We successfully measure a time lag between the CIV$lambda$1549 broad emission line and the quasar continuum in three objects, and measure a CIII$lambda$1909 lag in one quasar. Together with recently published data on CIV reverberation mapping, the BLR size is found to scale as the square root of the UV luminosity over eight orders of magnitude in AGN luminosity. There is a significant scatter in the relation, part of which may be intrinsic to the AGNs. Although the CIV line is probably less well suited than Balmer lines for determination of the mass of the black hole, virial masses are tentatively computed and in spite of a large scatter we find that the mass of the black hole scales as the square root of the UV luminosity.



قيم البحث

اقرأ أيضاً

We present Reverberation Mapping results after monitoring a sample of 17 high-z, high-luminosity quasars for more than 10 years using photometric and spectroscopic capabilities. Continuum and line emission flux variability is observed in all quasars. Using cross-correlation analysis we successfully determine lags between the variations in the continuum and broad emission lines for several sources. Here we present a highlight of our results and the determined radius--luminosity relations for Ly_alpha and CIV.
We present Reverberation Mapping (RM) results for 17 high-redshift, high-luminosity quasars with good quality R-band and emission line light curves. We are able to measure statistically significant lags for Ly_alpha (11 objects), SiIV (5 objects), CI V (11 objects), and CIII] (2 objects). Using our results and previous lag determinations taken from the literature, we present an updated CIV radius--luminosity relation and provide for the first time radius--luminosity relations for Ly_alpha, SiIV and CIII]. While in all cases the slope of the correlations are statistically significant, the zero points are poorly constrained because of the lack of data at the low luminosity end. We find that the emissivity weighted distance from the central source of the Ly_alpha, SiIV and CIII] line emitting regions are all similar, which corresponds to about half that of the H_beta region. We also find that 3/17 of our sources show an unexpected behavior in some emission lines, two in the Ly_alpha light curve and one in the SiIV light curve, in that they do not seem to follow the variability of the UV continuum. Finally, we compute RM black hole masses for those quasars with highly significant lag measurements and compare them with CIV single--epoch (SE) mass determinations. We find that the RM-based black hole mass determinations seem smaller than those found using SE calibrations.
The changes of broad emission lines should be a crucial issue to understanding the physical properties of changing-look active galactic nucleus (CL-AGN). Here, we present the results of an intensive and homogeneous 6-month long reverberation mapping (RM) monitoring campaign during a low-activity state of the CL-AGN Seyfert galaxy NGC 3516. Photometric and spectroscopic monitoring was carried out during 2018--2019 with the Lijiang 2.4 m telescope. The sampling is 2 days in most nights, and the average sampling is $sim$3 days. The rest frame time lags of H$alpha$ and H$beta$ are $tau_{rm{H}alpha}=7.56^{+4.42}_{-2.10}$ days and $tau_{rm{H}beta}=7.50^{+2.05}_{-0.77}$ days, respectively. From a RMS H$beta$ line dispersion of $sigma_{rm{line}} = 1713.3 pm 46.7$ $rm{km}$ $rm{s^{-1}}$ and a virial factor of $f_{sigma}$ = 5.5, the central black hole mass of NGC 3516 is estimated to be $M_{rm{BH}}= 2.4^{+0.7}_{-0.3} times 10^{7} M_{odot}$, which is in agreement with previous estimates. The velocity-resolved delays show that the time lags increase towards negative velocity for both H$alpha$ and H$beta$. The velocity-resolved RM of H$alpha$ is done for the first time. These RM results are consistent with other observations before the spectral type change, indicating a basically constant BLR structure during the changing-look process. The CL model of changes of accretion rate seems to be favored by long-term H$beta$ variability and RM observations of NGC 3516.
NGC 2617 has attracted a lot of attention after the detection of the changes in spectral type, and its geometry and kinematics of broad-line region (BLR) are still ambiguous. In this paper, we present the high cadence ($sim$ 2 days) reverberation map ping campaign of NGC 2617 from 2019 October to 2020 May undertaken at Lijiang 2.4 m telescope. For the first time, the velocity-resolved reverberation signature of the object was successfully detected. Both H$alpha$ and H$beta$ show an asymmetrical profile with a peak in the velocity-resolved time lags. For each of both lines, the lag of the line core is longer than those of the relevant wings, and the peak of the velocity-resolved lags is slightly blueshifted. These characteristics are not consistent with the theoretical prediction of the inflow, outflow or Keplerian disk model. Our observations give the time lags ofH$alpha$, H$beta$, H$gamma$, and He I, with a ratio of $tau_{rm{H}alpha}$:$tau_{rm{H}beta}$:$tau_{rm{H}gamma}$:$tau_{rm{He~I}}$ = 1.27:1.00:0.89:0.20, which indicates a stratified structure in the BLR of the object. It is the first time that the lags of H$alpha$ and He I are obtained. Assuming a virial factor of $f$ = 5.5 for dispersion width of line, the masses of black hole derived from H$alpha$ and H$beta$ are $rm{23.8^{+5.4}_{-2.7}}$ and $rm{21.1^{+3.8}_{-4.4}} times 10^{6}M_{odot}$, respectively. Our observed results indicate the complexity of the BLR of NGC 2617.
561 - Sha-Sha Li , Sen Yang , Zi-Xu Yang 2021
We report the results of a multi-year spectroscopic and photometric monitoring campaign of two luminous quasars, PG~0923+201 and PG~1001+291, both located at the high-luminosity end of the broad-line region (BLR) size-luminosity relation with optical luminosities above $10^{45}~{rm erg~s^{-1}}$. PG~0923+201 is for the first time monitored, and PG~1001+291 was previously monitored but our campaign has a much longer temporal baseline. We detect time lags of variations of the broad H$beta$, H$gamma$, Fe {sc ii} lines with respect to those of the 5100~{AA} continuum. The velocity-resolved delay map of H$beta$ in PG~0923+201 indicates a complicated structure with a mix of Keplerian disk-like motion and outflow, and the map of H$beta$ in PG~1001+291 shows a signature of Keplerian disk-like motion. Assuming a virial factor of $f_{rm BLR}=1$ and FWHM line widths, we measure the black hole mass to be $118_{-16}^{+11}times 10^7 M_{odot}$ for PG~0923+201 and $3.33_{-0.54}^{+0.62}times 10^7 M_{odot}$ for PG~1001+291. Their respective accretion rates are estimated to be $0.21_{-0.07}^{+0.06} times L_{rm Edd},c^{-2}$ and $679_{-227}^{+259}times L_{rm Edd},c^{-2}$, indicating that PG~0923+201 is a sub-Eddington accretor and PG~1001+291 is a super-Eddington accretor. While the H$beta$ time lag of PG~0923+201 agrees with the size-luminosity relation, the time lag of PG~1001+291 shows a significant deviation, confirming that in high-luminosity AGN the BLR size depends on both luminosity and Eddington ratio. Black hole mass estimates from single AGN spectra will be over-estimated at high luminosities and redshifts if this effect is not taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا