ﻻ يوجد ملخص باللغة العربية
We study a two-dimensional theory of gravity coupled to matter that is relevant to describe holographic properties of black holes with a single rotational parameter in five dimensions (with or without cosmological constant). We focus on the near-horizon geometry of the near-extremal black hole, where the effective theory reduces to Jackiw-Teitelboim (JT) gravity coupled to a massive scalar field. We compute the corrections to correlation functions due to cubic interactions present in this theory. A novel feature is that these corrections do not have a definite sign: for AdS$_5$ black holes the sign depends on the mass of the extremal solution. We discuss possible interpretations of these corrections from a gravitational and holographic perspective. We also quantify the imprint of the JT sector on the UV region, i.e. how these degrees of freedom, characteristic for the near-horizon region, influence the asymptotically far region of the black hole. This gives an interesting insight on how to interpret the IR modes in the context of their UV completion, which depends on the environment that contains the black hole.
Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry.
We investigate the asymptotic supersymmetry group of the near horizon region of the BMPV black holes, which are the rotating BPS black holes in five dimensions. When considering only bosonic fluctuations, we show that there exist consistent boundary
Within the framework of the complexity equals action and complexity equals volume conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which con
In this paper we find analytical expressions for thermodynamic quantities of scalar (tensor) and vector unparticle static black holes. We also find rotating solutions to these systems and analyse their thermodynamics. First we consider the static cas
We study rotating black holes in five dimensions using the nAdS$_2$/nCFT$_1$ correspondence. A consistent truncation of pure Einstein gravity (with a cosmological constant) in five dimensions to two dimensions gives a generalization of the Jackiw-Tei