ﻻ يوجد ملخص باللغة العربية
Under holographic prescription for Schwinger-Keldysh closed time contour for non-equilibrium system, we consider fluctuation effect of the order parameter in a holographic superconductor model. Near the critical point, we derive the time-dependent Ginzburg-Landau effective action governing dynamics of the fluctuating order parameter. In a semi-analytical approach, the time-dependent Ginzburg-Landau action is computed up to quartic order of the fluctuating order parameter, and first order in time derivative.
We present numerical studies of the dynamics of vortices in the Ginzburg Landau model using equations derived from the gradient flow of the free energy. These equations have previously been proposed to describe the dynamics of n-vortices away from eq
We study the Kibble-Zurek mechanism in a 2d holographic p-wave superconductor model with a homogeneous source quench on the critical point. We derive, on general grounds, the scaling of the Kibble-Zurek time, which marks breaking-down of adiabaticity
We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, $z$, indi
Searching for characteristic signatures of a higher order phase transition (specifically of order three or four), we have calculated the spatial profiles and the energies of a spatially varying order parameter in one dimension. In the case of a $p^{t
We apply Ginzburg-Landau theory to determine BCS pairing in a strongly-coupled uniform superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the critical temperature in the space of the parameters chara