There are four finite groups that could plausibly play the role of the spin group in a finite or discrete model of quantum mechanics, namely the four double covers of the three rotation groups of the Platonic solids. In an earlier paper I have consid
ered in detail how the smallest of these groups, namely the binary tetrahedral group, of order 24, could give rise to a non-relativistic theory that contains much of the structure of the standard model of particle physics. In this paper I consider how one of the two double covers of the rotation group of the cube might extend this to a relativistic theory.
We provide an introduction to logarithmic potential theory in the complex plane that particularly emphasizes its usefulness in the theory of polynomial and rational approximation. The reader is invited to explore the notions of Fekete points, logarit
hmic capacity, and Chebyshev constant through a variety of examples and exercises. Many of the fundamental theorems of potential theory, such as Frostmans theorem, the Riesz Decomposition Theorem, the Principle of Domination, etc., are given along with essential ideas for their proofs. Equilibrium measures and potentials and their connections with Green functions and conformal mappings are presented. Moreover, we discuss extensions of the classical potential theoretic results to the case when an external field is present.
We construct Galois theory for sublattices of certain complete modular lattices and their automorphism groups. A well-known description of the intermediate subgroups of the general linear group over an Artinian ring containing the group of diagonal m
atrices, due to Z.I.Borewicz and N.A.Vavilov, can be obtained as a consequence of this theory.
We construct Galois theory for sublattices of certain complete modular lattices and their automorphism groups. A well-known description of the intermediate subgroups of the general linear group over a semilocal ring containing the group of diagonal m
atrices, due to Z.I.Borewicz and N.A.Vavilov, can be obtained as a consequence of this theory.
This is a pre-publication version of a forthcoming book on quantum atom optics. It is written as a senior undergraduate to junior graduate level textbook, assuming knowledge of basic quantum mechanics, and covers the basic principles of neutral atom
matter wave systems with an emphasis on quantum technology applications. The topics covered include: introduction to second quantization of many-body systems, Bose-Einstein condensation, the order parameter and Gross-Pitaevskii equation, spin dynamics of atoms, spinor Bose-Einstein condensates, atom diffraction, atomic interferometry beyond the standard limit, quantum simulation, squeezing and entanglement with atomic ensembles, quantum information with atomic ensembles. This book would suit students who wish to obtain the necessary skills for working with neutral atom many-body atomic systems, or could be used as a text for an undergraduate or graduate level course (exercises are included throughout). This is a near-final draft of the book, but inevitably errors may be present. If any errors are found, we welcome you to contact us and it will be corrected before publication. (TB: tim.byrnes[at]nyu.edu, EI: ebube[at]nyu.edu)