ﻻ يوجد ملخص باللغة العربية
Uncertainty relations play a crucial role in quantum mechanics. A well-defined method exists for deriving such uncertainties for pairs of observables. It does not include, however, an important family of fundamental relations: the time-energy uncertainty relations. As a result, different approaches have been used for obtaining them in diversified scenarios. The one of interest here revolves around the idea of the existence or inexistence of a minimum duration for an energy measurement with a certain precision. In our study, we use the Page and Wooters timeless framework to investigate how energy measurements modify the relative flow of time between internal and external clocks. This provides a unified framework for discussing the topic, recovering previous results and leading to new ones. We also show that the evolution of the external clock with respect to the internal one is non-unitary.
The Heisenberg and Mandelstam-Tamm time-energy uncertainty relations are analyzed. The conlusion resulting from this analysis is that within the Quantum Mechanics of Schr{o}dinger and von Neumann, the status of these relations can not be considered a
Using the Mandelstam-Tamm method we derive time-energy uncertainty relations for neutrino oscillations. We demonstrate that the small energy uncertainty of antineutrinos in a recently considered experiment with recoilless resonant (Mossbauer) product
We prove the uncertainty relation $sigma_T , sigma_E geq hbar/2$ between the time $T$ of detection of a quantum particle on the surface $partial Omega$ of a region $Omegasubset mathbb{R}^3$ containing the particles initial wave function, using the ab
We present a unified view of the Berry phase of a quantum system and its entanglement with surroundings. The former reflects the nonseparability between a system and a classical environment as the latter for a quantum environment, and the concept of
One manifestation of quantum resonances is a large sojourn time, or autocorrelation, for states which are initially localized. We elaborate on Lavines time-energy uncertainty principle and give an estimate on the sojourn time. For the case of perturb