ﻻ يوجد ملخص باللغة العربية
Hierarchical analysis of the binary black hole (BBH) detections by the Advanced LIGO and Virgo detectors has offered an increasingly clear picture of their mass, spin, and redshift distributions. Fully understanding the formation and evolution of BBH mergers will require not just the characterization of these marginal distributions, though, but the discovery of any correlations that exist between the properties of BBHs. Here, we hierarchically analyze the ensemble of BBHs discovered by the LIGO and Virgo with a model that allows for intrinsic correlations between their mass ratios $q$ and effective inspiral spins $chi_mathrm{eff}$. At $98.7%$ credibility, we find that the mean of the $chi_mathrm{eff}$ distribution varies as a function of $q$, such that more unequal-mass BBHs exhibit systematically larger $chi_mathrm{eff}$. We find Bayesian odds ratio of $10.5$ in favor of a model that allows for such a correlation over one that does not. Finally, we use simulated signals to verify that our results are robust against degeneracies in the measurements of $q$ and $chi_mathrm{eff}$ for individual events. While many proposed astrophysical formation channels predict some degree correlation between spins and mass ratio, these predicted correlations typically act in an opposite sense to the trend we observationally identify in the data.
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o
When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angu
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported from the O1/O2 runs have near zero effective spins. There are only three potential explanations of this fact. If the BH spin magnitudes are large then (i) either both BH spin vectors
We present the first systematic study of strong binary-single and binary-binary black hole interactions with the inclusion of general relativity. When including general relativistic effects in strong encounters, dissipation of orbital energy from gra