ﻻ يوجد ملخص باللغة العربية
Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER -- a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://cider-task.github.io/cider/.
Humans use commonsense reasoning (CSR) implicitly to produce natural and coherent responses in conversations. Aiming to close the gap between current response generation (RG) models and human communication abilities, we want to understand why RG mode
Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provid
Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with pr
Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, wh
Commonsense explanation generation aims to empower the machines sense-making capability by generating plausible explanations to statements against commonsense. While this task is easy to human, the machine still struggles to generate reasonable and i