ترغب بنشر مسار تعليمي؟ اضغط هنا

CIDER: Commonsense Inference for Dialogue Explanation and Reasoning

87   0   0.0 ( 0 )
 نشر من قبل Deepanway Ghosal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Commonsense inference to understand and explain human language is a fundamental research problem in natural language processing. Explaining human conversations poses a great challenge as it requires contextual understanding, planning, inference, and several aspects of reasoning including causal, temporal, and commonsense reasoning. In this work, we introduce CIDER -- a manually curated dataset that contains dyadic dialogue explanations in the form of implicit and explicit knowledge triplets inferred using contextual commonsense inference. Extracting such rich explanations from conversations can be conducive to improving several downstream applications. The annotated triplets are categorized by the type of commonsense knowledge present (e.g., causal, conditional, temporal). We set up three different tasks conditioned on the annotated dataset: Dialogue-level Natural Language Inference, Span Extraction, and Multi-choice Span Selection. Baseline results obtained with transformer-based models reveal that the tasks are difficult, paving the way for promising future research. The dataset and the baseline implementations are publicly available at https://cider-task.github.io/cider/.



قيم البحث

اقرأ أيضاً

Humans use commonsense reasoning (CSR) implicitly to produce natural and coherent responses in conversations. Aiming to close the gap between current response generation (RG) models and human communication abilities, we want to understand why RG mode ls respond as they do by probing RG models understanding of commonsense reasoning that elicits proper responses. We formalize the problem by framing commonsense as a latent variable in the RG task and using explanations for responses as textual form of commonsense. We collect 6k annotated explanations justifying responses from four dialogue datasets and ask humans to verify them and propose two probing settings to evaluate RG models CSR capabilities. Probing results show that models fail to capture the logical relations between commonsense explanations and responses and fine-tuning on in-domain data and increasing model sizes do not lead to understanding of CSR for RG. We hope our study motivates more research in making RG models emulate the human reasoning process in pursuit of smooth human-AI communication.
Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provid e a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) -- the task of answering a commonsense question without any pre-defined choices -- using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.
Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with pr operties that hold for most or some instances of the concept. Each concept is treated in isolation from other concepts, and the only quantitative measure (or ranking) of properties is a confidence score that the statement is valid. This paper aims to overcome these limitations by introducing a multi-faceted model of CSK statements and methods for joint reasoning over sets of inter-related statements. Our model captures four different dimensions of CSK statements: plausibility, typicality, remarkability and salience, with scoring and ranking along each dimension. For example, hyenas drinking water is typical but not salient, whereas hyenas eating carcasses is salient. For reasoning and ranking, we develop a method with soft constraints, to couple the inference over concepts that are related in in a taxonomic hierarchy. The reasoning is cast into an integer linear programming (ILP), and we leverage the theory of reduction costs of a relaxed LP to compute informative rankings. This methodology is applied to several large CSK collections. Our evaluation shows that we can consolidate these inputs into much cleaner and more expressive knowledge. Results are available at https://dice.mpi-inf.mpg.de.
Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, wh ile providing little human-interpretable evidence of the underlying reasoning they use. In this work, we show how to use these same models to generate such evidence: inspired by the contrastive nature of human explanations, we use PLMs to complete explanation prompts which contrast alternatives according to the key attribute(s) required to justify the correct answer (for example, peanuts are usually salty while raisins are sweet). Conditioning model decisions on these explanations improves performance on two commonsense reasoning benchmarks, as compared to previous non-contrastive alternatives. These explanations are also judged by humans to be more relevant for solving the task, and facilitate a novel method to evaluate explanation faithfulfness.
138 - Haozhe Ji , Pei Ke , Shaohan Huang 2020
Commonsense explanation generation aims to empower the machines sense-making capability by generating plausible explanations to statements against commonsense. While this task is easy to human, the machine still struggles to generate reasonable and i nformative explanations. In this work, we propose a method that first extracts the underlying concepts which are served as textit{bridges} in the reasoning chain and then integrates these concepts to generate the final explanation. To facilitate the reasoning process, we utilize external commonsense knowledge to build the connection between a statement and the bridge concepts by extracting and pruning multi-hop paths to build a subgraph. We design a bridge concept extraction model that first scores the triples, routes the paths in the subgraph, and further selects bridge concepts with weak supervision at both the triple level and the concept level. We conduct experiments on the commonsense explanation generation task and our model outperforms the state-of-the-art baselines in both automatic and human evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا